CAE 208 Thermal-Fluids Engineering I MMAE 320: Thermodynamics Fall 2022

November 29, 2022 Entropy (iv) and power and refrigeration cycles (I)

Built Environment Research @ IIT] 🗫 🕣 🍂 🛹

Advancing energy, environmental, and sustainability research within the built environment www.built-envi.com Dr. Mohammad Heidarinejad, Ph.D., P.E.

Civil, Architectural and Environmental Engineering Illinois Institute of Technology

muh182@iit.edu

ANNOUNCEMENTS

Announcements

- Assignment 9 (the extra assignment) is due Thursday
- The final exam is
 - December 6, 10:30– 12:30, PS 152
 - □ Follow the instructions about the exam
 - https://www.iit.edu/sites/default/files/2022-11/final exam schedule 2.pdf

RECAP

The Reversed Carnot Cycle
 The Carnot heat-engine cycle is a totally reversible cycle

P-V diagram of the Carnot cycle

Recap

 The equality in the Clausius inequality holds for totally or just internally reversible cycles and the inequality for the irreversible ones

$$\left(\oint \frac{\delta Q}{T}\right)_{int,rev} = 0$$

$$\Delta S = S_2 - S_1 = \int_1^2 \left(\frac{\delta Q}{T}\right)_{int,rev}$$

• For entropy, we can say

$$dS > \left(\frac{\delta Q}{T}\right)_{irr}$$

$$dS = \frac{\delta Q}{T} + \delta S_{gen}$$

Recap

- The entropy of a fixed mass can be changed by:
 Heat Transfer
 Irreversibilities
- Entropy of a fixed mass does not change during a process that is internally reversible and adiabatic. During this process entropy remains constant and we call it *isentropic* process

$$\Delta s = 0 \quad or \quad s_2 = s_1 \quad \left(\frac{kJ}{kg - K}\right)$$

• We can rearrange our entropy equation:

Recap

• We can find heat and work from the T-S diagram

Recap

• The first T ds (or Gibbs) equation:

$$ds = \frac{du}{T} + \frac{Pdv}{T}$$

$$ds = \frac{du}{T} - \frac{vdP}{T}$$

 Liquids and solids can be approximated as incompressible substances (*dv* ≅ 0 & *c_p* = *c_v* = *c_p* = *c*):

$$ds = \frac{du}{T} - \frac{vdP}{T}$$

$$s_2 - s_1 = \int_1^2 c(T) \frac{dT}{T} \cong c_{avg} \ln(\frac{T_2}{T_1})$$

$$s_2 - s_1 = \int_1^2 c(T) \frac{dT}{T} \cong c_{avg} \ln\left(\frac{T_2}{T_1}\right) = 0 \quad \rightarrow \quad T_2 = T_1$$
 (For isentropic)

• Approach 1: Constant Specific Heats (Approximate Analysis):

$$s_{2} - s_{1} = \int_{1}^{2} c_{v}(T) \frac{dT}{T} + R \ln(\frac{v_{2}}{v_{1}})$$
$$s_{2} - s_{1} = c_{v,avg} \ln\left(\frac{T_{2}}{T_{1}}\right) + R \times \ln\left(\frac{v_{2}}{v_{1}}\right)$$

$$s_2 - s_1 = c_{p,avg} \times \ln\left(\frac{T_2}{T_1}\right) - R \times \ln\left(\frac{P_2}{P_1}\right)$$

Recap

• Approach 2: Variable Specific Heats (Exact Analysis):

$$s^{0} = \int_{0}^{T} c_{p}(T) \frac{dT}{T}$$
$$\int_{0}^{T} c_{p}(T) \frac{dT}{T} = s_{2}^{0} - s_{1}^{0}$$
$$s_{2} - s_{1} = s_{2}^{0} - s_{1}^{0} - R \times \ln(\frac{P_{2}}{P_{1}})$$
$$\bar{s}_{2} - \bar{s}_{1} = \bar{s}_{2}^{0} - \bar{s}_{1}^{0} - R_{u} \times \ln(\frac{P_{2}}{P_{1}})$$

О	ТК	s° kI/ko·K
	$\underline{\underline{1, \mathbf{K}}}$	5, KO/Kg IX
0		:
	300	1.70203
	310	1.73498
	320	1.76690
		•
	•	•
	•	•
0	(Tal	ole A-21)

THE ENTROPY CHANGE OF IDEAL GASES

$$s_2 - s_1 = c_{\nu,a\nu g} \ln\left(\frac{T_2}{T_1}\right) + R \times \ln\left(\frac{\nu_2}{\nu_1}\right) \quad \rightarrow \quad \ln\left(\frac{T_2}{T_1}\right) = -\frac{R}{c_\nu} \ln\left(\frac{\nu_2}{\nu_1}\right)$$

$$s_2 - s_1 = c_{p,avg} \times \ln\left(\frac{T_2}{T_1}\right) - R \times \ln\left(\frac{P_2}{P_1}\right) \rightarrow \ln\left(\frac{T_2}{T_1}\right) = \frac{R}{c_p}\ln(\frac{P_2}{P_1})$$

$$s_2 - s_1 = c_{\nu,a\nu g} \ln\left(\frac{T_2}{T_1}\right) + R \times \ln\left(\frac{\nu_2}{\nu_1}\right) \quad \rightarrow \quad \ln\left(\frac{T_2}{T_1}\right) = -\frac{R}{c_\nu} \ln\left(\frac{\nu_2}{\nu_1}\right)$$

$$\ln\left(\frac{T_2}{T_1}\right) = \ln\left(\frac{\nu_1}{\nu_2}\right)^{\frac{R}{c_{\nu}}}$$

$$\begin{cases} c_p - c_v = R \\ k = \frac{c_p}{c_v} \end{cases} \rightarrow \frac{R}{c_v} = k - 1 \qquad \qquad \frac{T_2}{T_1} = \left(\frac{\nu_1}{\nu_2}\right)^{k-1}$$

$$\left(\frac{T_2}{T_1}\right)_{s=constant} = \left(\frac{v_1}{v_2}\right)^{k-1}$$

$$\left(\frac{T_2}{T_1}\right)_{s=constant} = \left(\frac{P_2}{P_1}\right)^{\frac{k-1}{k}}$$

$$\left(\frac{P_2}{P_1}\right)_{s=constant} = \left(\frac{v_1}{v_2}\right)^k$$

 Approach 2: Variable Specific Heats (Exact Analysis) for Isentropic Processes of Ideal Gases

$$0 = s_2^0 - s_1^0 - R \times \ln(\frac{P_2}{P_1})$$

$$s_2^0 = s_1^0 + R \times \ln(\frac{P_2}{P_1})$$

$$s_2^0 = s_1^0 + R \times \ln\left(\frac{P_2}{P_1}\right) \rightarrow \frac{P_2}{P_1} = \exp(\frac{s_2^0 - s_1^0}{R})$$

(It will not be included in the exam)

 Air enters an isentropic turbine at 150 psia and 900 °F through a 0.5 ft² inlet section with a velocity of 500 ft/s. It leaves at 15 psia with a velocity of 100 ft/s. Calculate the air temperature at the turbine exit and the power produced, in hp, by this turbine.

- Solution (assumptions):
 - □ Steady flow
 - □ The process is isentropic (both reversible and adiabatic)
 - □ Ideal gas with a constant specific heat

Ideal-gas specific heats of various common gases (b) At various temperatures

• Solution (Tables): \Box Table A-2Eb: @600 °F $\rightarrow c_p = 0.250 \frac{Btu}{lbm-R}$ and k = 1.3777

Temp., °F	c_p Btu/lbm · R	c_v Btu/lbm · R	k	c_p Btu/lbm $\cdot {\rm R}$	c_v Btu/lbm · R	k		
	Air			Carbon dioxide, CO ₂				
40	0.240	0.171	1.401	0.195	0.150	1.300		
100	0.240	0.172	1.400	0.205	0.160	1.283		
200	0.241	0.173	1.397	0.217	0.172	1.262		
300	0.243	0.174	1.394	0.229	0.184	1.246		
400	0.245	0.176	1.389	0.239	0.193	1.233		
500	0.248	0.179	1.383	0.247	0.202	1.223		
600	0.250	0.182	1.377	0.255	0.210	1.215		
700	0.254	0.185	1.371	0.262	0.217	1.208		
800	0.257	0.188	1.365	0.269	0.224	1.202		
900	0.259	0.191	1.358	0.275	0.230	1.197		
1000	0.263	0.195	1.353	0.280	0.235	1.192		
1500	0.276	0.208	1.330	0.298	0.253	1.178		
2000	0.286	0.217	1.312	0.312	0.267	1.169		

• Solution (Tables):

Table A-1E:
$$R = 0.3704 \frac{psia - ft^3}{lbm - R}$$

TABLE A-1E									
Molar mass, gas constant, and critical-point properties									
	Formula	Molar mass, <i>M</i> lbm/lbmol	Gas constant, R*		Critical-point properties				
Substance			Btu/lbm · R	psia · ft ³ /lbm · R	Temperature, R	Pressure, psia	Volume, ft ³ /lbmol		
Air	_	28.97	0.06855	0.3704	238.5	547	1.41		

• Solution (Problem solving):

 $\dot{m} = \dot{m}_1 = \dot{m}_2$

$$\dot{E}_{in} - \dot{E}_{out} = \frac{d\dot{E}_{system}}{dt} = 0$$

$$\dot{m}(h_1 + V_1^2) = \dot{m}\left(h_2 + \frac{V_2^2}{2}\right) + \dot{W}_{out}$$

$$\dot{W}_{out} = \dot{m} \left(h_1 - h_1 + \frac{V_1^2 - V_2}{2} \right)$$

• Solution (Calculations):

$$\frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{\frac{k-1}{k}} \to T_2 = T_1 \times \left(\frac{P_2}{P_1}\right)^{\frac{k-1}{k}} = (900 + 460 R) \left(\frac{15 \text{ psia}}{150 \text{ psia}}\right)^{\frac{0.3777}{1.377}} = 724 R$$

$$v_1 = \frac{RT_1}{P_1} = \frac{\left(0.3704 \frac{psia - ft^3}{lbm - R}\right)(900 + 460 R)}{150 \ psia} = 3.358 \frac{ft^3}{lbm}$$

$$\dot{m} = \frac{A_1 V_1}{v_1} = \frac{(0.5 f t^2) \left(500 \frac{f t}{s}\right)}{3.358 \frac{f t^3}{l b m}} = 74.45 \frac{l b m}{s}$$

• Solution (Calculations):

$$\dot{W}_{out} = \dot{m} \left(h_1 - h_1 + \frac{V_1^2 - V_2}{2} \right)$$

$$\dot{W}_{out} = \left(74.45 \frac{lbm}{s}\right) \left[\left(0.250 \frac{Btu}{lbm - R}\right) (1360 - 724R) + \left(\frac{\left(500 \frac{ft}{s}\right)^2}{2} - \frac{\left(100 \frac{ft}{s}\right)^2}{2}\right) \left(\frac{1 \frac{Btu}{lbm}}{25.037} ft^2 - \frac{100 \frac{ft}{s}}{s^2}\right) \right] \left(\frac{1 \frac{Btu}{lbm}}{s^2} ft^2 - \frac{100 \frac{ft}{s}}{s^2}\right) \left(\frac{1 \frac{Btu}{lbm}}{s^2} ft^2 - \frac{100 \frac{ft}{s}}{s^2}\right) \left(\frac{100 \frac{ft}{s}}$$

$$\dot{W}_{out} = 12,194 \frac{Btu}{s} \left(\frac{1 \ hp}{0.7068 \frac{Btu}{s}} \right) = 17,250 \ hp$$

Chapter 8 Summary

• We did not cover 8-10, 8-11, and 8-12

POWER AND REFRIGERATION CYCLES

Power and Refrigeration Cycles

- Two important applications for thermodynamics are:
 Dever generation
 - Refrigeration
- Remember to produce work we need a cycle:
 - Power cycles for heat engines
 - □ Refrigeration cycles for refrigerators, heat pumps, air conditioners
- Depending on the working fluid and its phases we can call them:
 - Gas cycles
 - □ Vapor cycles

BASIC CONSIDERATIONS IN THE ANALYSIS OF POWER CYCLES

Considerations in the Analysis of Power Cycles

 We resemble most of actual cycles with internal irreversibilities and complexities with internal reversible cycles known as ideal cycles

Considerations in the Analysis of Power Cycles

 Property diagrams such as T-s and P-V diagrams can serve as valuable aids in understanding and analysis of thermodynamics process:

THE CARNOT CYCLE AND ITS VALUE IN ENGINEERING

The Carnot Cycle and Its Value in Engineering

- Carnot cycle has four main processes:
 - 1. Isothermal heat addition
 - 2. Isentropic expansion
 - 3. Isothermal heat rejection
 - 4. Isentropic compression

The Carnot Cycle and Its Value in Engineering

 Property diagrams such as T-s and P-V diagrams can serve as valuable aids in understanding and analysis of thermodynamics process:

CLASS ACTIVITY

• (Derivation of the Efficiency of the Carnot Cycle): Show that the thermal efficiency of a Carnot cycle operating between limits of T_H and T_L is solely function of these two temperatures is equal to $\eta_{thermal,Carnot} = 1 - \frac{T_L}{T_H}$

• Solution:

REFRIGERATORS AND HEAT PUMPS (SECTION 9-14 AND 9-15)

Refrigerators and Heat Pumps

• We looked at this in Chapter 7

Refrigerators and Heat Pumps

• The Carnot cycle includes:

Refrigerators and Heat Pumps

• The T-s diagram for the Carnot cycle is:

IDEAL VAPOR COMPRESSION REFRIGERATION CYCLE (SECTION 9-16)

- In practice, there are several issues that limit the use of Carnot vapor compression cycle:
 - □ 1-2: Isentropic compression in a compressor
 - □ 2-3: Constant pressure heat rejection in a condenser
 - □ 3-4: Throttling in an expansion valve
 - □ 4-1: Constant pressure heat absorption in an evaporator

 In practice, there are several issues that limit the use of Carnot vapor compression cycle:

• An ordinary refrigerator, has all the four main components:

• P-h diagram is very helpful in analyzing the performance:

$$COP_{HP} = \frac{q_H}{w_{net,in}} = \frac{h_2 - h_3}{h_2 - h_1}$$

$$COP_R = \frac{q_L}{w_{net,in}} = \frac{h_1 - h_4}{h_2 - h_1}$$

$$(q_{in} - q_{out}) + (w_{in} - w_{out}) = h_e - h_i$$

CLASS ACTIVITY

- A refrigerator uses refrigerant 134-a as the working fluid and operates on an ideal vapor-compression cycle between 0.14 and 0.8 MPa. If the mass flow rate of the refrigerant is 0.05 kg/s, determine
 - a) The rate of heat removal from the refrigerated space and the power input to the compressor
 - b) The rate of heat rejection to the environment
 - c) The COP of the refrigerator

- Solution (assumption):
 - □ Steady operating condition exist
 - □ Kinetic and potential energy are negligible
- Understanding the states:

• Solution: Reading properties from the tables:

$$\begin{cases} P_1 = 0.14 MPa \rightarrow h_1 = h_{g@0.14 MPa} = 239.19 \frac{kJ}{kg} \\ s_1 = s_{g@0.14 MPa} = 0.94467 \frac{kJ}{kg - K} \end{cases}$$

TABLE A-12

Saturate	d refrigerant	-134a—Pressure t	table									
Press., Sat. <i>P</i> temp., kPa T _{sat} °C		Specific volume, m ³ /kg		Internal energy, kJ/kg		Enthalpy, kJ/kg			Entropy, kJ/kg · K			
	Sat. temp., T _{sat} °C	Sat. liquid, V _f	Sat. vapor, U _g	Sat. liquid, <i>u_f</i>	Evap., u _{fg}	Sat. vapor, u _g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h _g	Sat. liquid, <i>s_f</i>	Evap., <i>s_{fg}</i>	Sat. vapor, s _g
60	-36.95	0.0007097	0.31108	3.795	205.34	209.13	3.837	223.96	227.80	0.01633	0.94812	0.96445
70	-33.87	0.0007143	0.26921	7.672	203.23	210.90	7.722	222.02	229.74	0.03264	0.92783	0.96047
80	-31.13	0.0007184	0.23749	11.14	201.33	212.48	11.20	220.27	231.47	0.04707	0.91009	0.95716
90	-28.65	0.0007222	0.21261	14.30	199.60	213.90	14.36	218.67	233.04	0.06003	0.89431	0.95434
100	-26.37	0.0007258	0.19255	17.19	198.01	215.21	17.27	217.19	234.46	0.07182	0.88008	0.95191
120	-22.32	0.0007323	0.16216	22.38	195.15	217.53	22.47	214.52	236.99	0.09269	0.85520	0.94789
140	-18.77	0.0007381	0.14020	26.96	192.60	219.56	27.06	212.13	239.19	0.11080	0.83387	0.94467

• Solution: Reading properties from the tables:

$$\begin{cases} P_3 = 0.8 MPa \\ s_2 = s_1 = 0.94467 \frac{kJ}{kg - K} & \rightarrow h_2 = 275.40 \frac{kJ}{kg} \end{cases}$$

TABLE A-13									
Superheated refrigerant-134a									
T °C	v m ³ /kg	u kJ/kg	h kJ/kg	s kJ/kg ∙ K					
	Р	= 0.80 MPa	$a (T_{\text{sat}} = 31)$.31°C)					
Sat.	0.025645	246.82	267.34	0.9185					
40	0.027035	254.84	276.46	0.9481					
50	0.028547	263.87	286.71	0.9803					
60	0.029973	272.85	296.82	1.0111					
70	0.031340	281.83	306.90	1.0409					

• Solution: Reading properties from the tables:

$$P_3 = 0.8 MPa \rightarrow h_3 = h_{f@0.8 MPa} = 95.48 \frac{kJ}{kg}$$

TABLE A	TABLE A-12											
Saturate	Saturated refrigerant-134a—Pressure table											
		<i>Specific volume,</i> m ³ /kg		Internal energy, kJ/kg			Enthalpy, kJ/kg					
Press., <i>P</i> kPa	Sat. temp., T _{sat} °C	Sat. liquid, U _f	Sat. vapor, U _g	Sat. liquid, <i>u_f</i>	Evap., u _{fg}	Sat. vapor, u _g	Sat. liquid, <i>h_f</i>	Evap., h _{fg}	Sat. vapor, h _g			
650	24.20	0.0008265	0.031680	84.72	158.51	243.23	85.26	178.56	263.82			
700	26.69	0.0008331	0.029392	88.24	156.27	244.51	88.82	176.26	265.08			
750	29.06	0.0008395	0.027398	91.59	154.11	245.70	92.22	174.03	266.25			
800	31.31	0.0008457	0.025645	94.80	152.02	246.82	95.48	171.86	267.34			
850	33.45	0.0008519	0.024091	97.88	150.00	247.88	98.61	169.75	268.36			
900	35.51	0.0008580	0.022703	100.84	148.03	248.88	101.62	167.69	269.31			

$$h_4 \cong h_3 \ (throttling) \rightarrow h_4 = 95.48 \frac{kJ}{kg}$$

• Solution (a): The rate of heat removal from the refrigerated space and the power input to the compressor is

$$\dot{Q}_L = \dot{m}(h_1 - h_4) = \left(0.05 \frac{kg}{s}\right) \left((239.19 - 95.48) \frac{kJ}{kg}\right) = 7.19 \ kW$$

$$\dot{W}_{in} = \dot{m}(h_2 - h_1) = \left(0.05 \frac{kg}{s}\right) \left((275.40 - 239.19) \frac{kJ}{kg}\right) = 1.18 \ kW$$

 Solution (b): The rate of heat rejection from the refrigerant to the environment is:

$$\dot{Q}_H = \dot{m}(h_2 - h_3) = \left(0.05 \frac{kg}{s}\right) \left((275.40 - 95.48) \frac{kJ}{kg}\right) = 9.00 \ kW$$

 $\dot{Q}_H = \dot{Q}_L + \dot{W}_{in} = 7.19 + 1.81 = 9.00 \ kW$

• Solution (c): The coefficient of performance of the refrigerator is:

$$COP_R = \frac{\dot{Q}_L}{\dot{W}_{in}} = \frac{7.19 \ kW}{1.81 \ kW} = 3.97$$

ACTUAL VAPOR-COMPRESSION REFRIGERATION CYCLE (SECTION 9-17)

Actual Vapor-Compression Refrigeration Cycle

 An actual vapor-compression refrigeration cycle varies from the ideal one because of two common sources of irreversibilities:

CLASS ACTIVITY

- (The actual vapor-compression refrigeration cycle almost similar inputs to the previous class activity): Refrigerant 134-a enters the compressor of a refrigerator as superheated vapor at 0.14 MPa and -10 °C at a rate of 0.05 kg/s and leaves at 0.8 MPa and 50 °C. The refrigerant is cooled in the condenser to 26 °C and 0.72 MPa and id throttled to 0.15 MPa. Disregarding any heat transfer and pressure drops in the connecting lines between the components determine
 - a) The rate of heat removal from the refrigerated space and the power pressure drops in the connecting lines between the components
 - b) The isentropic efficiency of the compressor
 - c) The coefficient of performance of the refrigerator

- Solution (assumption):
 - □ Steady operating condition exist
 - □ Kinetic and potential energy are negligible

• Solution (T-s diagram)

• Solution (Tables and Calculations):

$$\begin{cases} P_1 = 0.14 \ MPa \\ T_1 = -10 \ ^\circ C \end{cases} \rightarrow h_1 = 246.37 \ \frac{kJ}{kg} \end{cases}$$

TABLE A-12

Saturated refrigerant-134a—Pressure table

Press., P kPa	Sat. temp., T _{sat} °C	Specific volume, m ³ /kg		Internal energy, kJ/kg			Enthalpy, kJ/kg		
		Sat. liquid, V _f	Sat. vapor, U _g	Sat. liquid, <i>u_f</i>	Evap., u _{fg}	Sat. vapor, u _g	Sat. liquid, <i>h_f</i>	Evap., h _{fg}	Sat. vapor, h _g
60	-36.95	0.0007097	0.31108	3.795	205.34	209.13	3.837	223.96	227.80
70	-33.87	0.0007143	0.26921	7.672	203.23	210.90	7.722	222.02	229.74
80	-31.13	0.0007184	0.23749	11.14	201.33	212.48	11.20	220.27	231.47
90	-28.65	0.0007222	0.21261	14.30	199.60	213.90	14.36	218.67	233.04
100	-26.37	0.0007258	0.19255	17.19	198.01	215.21	17.27	217.19	234.46
120	-22.32	0.0007323	0.16216	22.38	195.15	217.53	22.47	214.52	236.99
140	-18.77	0.0007381	0.14020	26.96	192.60	219.56	27.06	212.13	239.19

TABLE A-13

Superheated refrigerant-134a

	v m ³ /kg	u kJ/kg	h kJ/kg	s kJ/kg ∙ K
	Р	= 0.14 MPa	$(T_{\rm sat} = -18)$	8.77°C)
Sat.	0.14020	219.56	239.19	0.9447
-20	0.14605	225.02	246 27	0.0724
-10	0.14803	223.93	248.57	1.0032

• Solution (Tables and Calculations):

$$\begin{cases} P_1 = 0.14 MPa \\ T_1 = -10 \ ^\circ C \end{cases} \rightarrow h_1 = 246.37 \frac{kJ}{kg} \end{cases}$$

$$\begin{cases} P_2 = 0.8 MPa \\ T_2 = -50 \ ^{\circ}C \end{cases} \rightarrow h_2 = 286.71 \frac{kJ}{kg} \end{cases}$$

$$\begin{cases} P_3 = 0.72 \ MPa \\ T_3 = 26 \ ^{\circ}C \end{cases} \to h_3 \cong h_{f \ @ \ 26 \ ^{\circ}C} = 87.83 \ \frac{kJ}{kg} \end{cases}$$

$$\begin{cases} h_4 \cong h_3 = 87.83 \frac{kJ}{kg} \end{cases}$$

• Solution (a): The rate of heat removal from the refrigerated space and the power input to the compressor are:

$$\dot{Q}_L = \dot{m}(h_1 - h_4) = \left(0.05 \frac{kg}{s}\right) \left((246.37 - 87.83) \frac{kJ}{kg}\right) = 7.93 \ kW$$

$$\dot{W}_{in} = \dot{m}(h_2 - h_1) = \left(0.05 \frac{kg}{s}\right) \left((286.71 - 246.37) \frac{kJ}{kg}\right) = 2.02 \ kW$$

 Solution (b): The isentropic efficiency of the compressor is determined from:

$$\eta_C \cong \frac{h_{2s} - h_1}{h_2 - h_1}$$

• Where the enthalpy at state 2s ($P_{2s} = 0.8 MPa$ and $s_{2s} = s_1 = 0.9724 \frac{kJ}{kg-K}$) is 284.20 $\frac{kJ}{kg}$. Thus:

$$\eta_C \cong \frac{284.20 - 246.37}{286.71 - 246.37} = 0.938 \ or \ 93.8\%$$

• Solution (c): The coefficient of performance of the refrigerator is:

$$COP_R = \frac{\dot{Q}_L}{\dot{W}_{in}} = \frac{7.93 \ kW}{2.02 \ kW} = 3.93$$

CLASS ACTIVITY

• Solve the previous example using P-h diagram (ASHRAE)

• Solve the previous example using P-h diagram (ASHRAE)

Fig. 8 Pressure-Enthalpy Diagram for Refrigerant 134a