
CAE 208 Thermal-Fluids Engineering I
MMAE 320: Thermodynamics 
Fall 2022

November 29, 2022
Entropy (iv) and power and refrigeration cycles (I)

Dr. Mohammad Heidarinejad, Ph.D., P.E.
Civil, Architectural and Environmental Engineering

Illinois Institute of Technology
muh182@iit.edu

Advancing energy, environmental, and
sustainability research within the built environment

www.built-envi.com

mailto:muh182@iit.edu
http://www.built-envi.com


ANNOUNCEMENTS

2



Announcements

3

• Assignment 9 (the extra assignment) is due Thursday

• The final exam is 
q December 6, 10:30– 12:30, PS 152
q Follow the instructions about the exam
q https://www.iit.edu/sites/default/files/2022-

11/final_exam_schedule_2.pdf

https://www.iit.edu/sites/default/files/2022-11/final_exam_schedule_2.pdf
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• The Reversed Carnot Cycle
q The Carnot heat-engine cycle is a totally reversible cycle

P-V diagram of the Carnot cycle
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• The equality in the Clausius inequality holds for totally or 
just internally reversible cycles and the inequality for the 
irreversible ones

!
𝛿𝑄
𝑇

!"#,%&'

= 0

Δ𝑆 = 𝑆! − 𝑆" = %
"

! 𝛿𝑄
𝑇 #$%,'()
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• For entropy, we can say

𝑑𝑆 >
𝛿𝑄
𝑇 !%%

𝑑𝑆 =
𝛿𝑄
𝑇
+ 𝛿𝑆(&"
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• The entropy of a fixed mass can be changed by:
q Heat Transfer 
q Irreversibilities

• Entropy of a fixed mass does not change during a process 
that is internally reversible and adiabatic. During this process 
entropy remains constant and we call it isentropic process

Δ𝑠 = 0 𝑜𝑟 𝑠! = 𝑠" (
𝑘𝐽

𝑘𝑔 − 𝐾)
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• We can rearrange our entropy equation:

𝛿𝑄!"#,%&' = 𝑇 𝑑𝑆 𝑄!"#,%&' = +
)

*
𝑇 𝑑𝑆 (𝑘𝐽)
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• We can find heat and work from the T-S diagram
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• The first T ds (or Gibbs) equation:

𝑑𝑠 =
𝑑𝑢
𝑇
+
𝑃𝑑𝑣
𝑇

𝑑𝑠 =
𝑑𝑢
𝑇
−
𝑣𝑑𝑃
𝑇
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• Liquids and solids can be approximated as incompressible 
substances (𝑑𝑣 ≅ 0 & 𝑐8 = 𝑐9 = 𝑐8 = 𝑐):

𝑑𝑠 =
𝑑𝑢
𝑇
−
𝑣𝑑𝑃
𝑇

𝑠! − 𝑠" = %
"

!
𝑐 𝑇

𝑑𝑇
𝑇
≅ 𝑐*)+ ln(

𝑇!
𝑇"
)

𝑠! − 𝑠" = %
"

!
𝑐 𝑇

𝑑𝑇
𝑇
≅ 𝑐*)+ ln

𝑇!
𝑇"

= 0 → 𝑇! = 𝑇" (For isentropic)
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• Approach 1: Constant Specific Heats (Approximate Analysis):

𝑠! − 𝑠" = %
"

!
𝑐) 𝑇

𝑑𝑇
𝑇
+ 𝑅 ln(

𝑣!
𝑣"
)

𝑠! − 𝑠" = 𝑐),*)+ ln
𝑇!
𝑇"

+ 𝑅×𝑙𝑛
𝑣!
𝑣"

𝑠! − 𝑠" = 𝑐,,*)+× ln
𝑇!
𝑇"

− 𝑅×ln(
𝑃!
𝑃"
)
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• Approach 2: Variable Specific Heats (Exact Analysis):

𝑠- = %
-

.
𝑐, 𝑇

𝑑𝑇
𝑇

%
-

.
𝑐, 𝑇

𝑑𝑇
𝑇
= 𝑠!- − 𝑠"-

𝑠! − 𝑠" = 𝑠!- − 𝑠"- − 𝑅×ln(
𝑃!
𝑃"
)

C𝑠! − C𝑠" = 𝑠!- − 𝑠"- − 𝑅/×ln(
𝑃!
𝑃"
)
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• Approach 1: Constant Specific Heats (Approximate Analysis) 
for Isentropic Processes of Ideal Gases

𝑠! − 𝑠" = 𝑐),*)+ ln
𝑇!
𝑇"

+ 𝑅×𝑙𝑛
𝑣!
𝑣"

→ ln
𝑇!
𝑇"

= −
𝑅
𝑐)
ln(
𝑣!
𝑣"
)

𝑠! − 𝑠" = 𝑐,,*)+× ln
𝑇!
𝑇"

− 𝑅× ln
𝑃!
𝑃"

→ ln
𝑇!
𝑇"

=
𝑅
𝑐,
ln(
𝑃!
𝑃"
)
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• Approach 1: Constant Specific Heats (Approximate Analysis) 
for Isentropic Processes of Ideal Gases

ln
𝑇!
𝑇"

= ln
𝑣"
𝑣!

0
1!

D
𝑐, − 𝑐) = 𝑅

𝑘 =
𝑐,
𝑐)

→
𝑅
𝑐)
= 𝑘 − 1

𝑇!
𝑇"
=

𝑣"
𝑣!

23"

𝑠! − 𝑠" = 𝑐),*)+ ln
𝑇!
𝑇"

+ 𝑅×𝑙𝑛
𝑣!
𝑣"

→ ln
𝑇!
𝑇"

= −
𝑅
𝑐)
ln(
𝑣!
𝑣"
)
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• Approach 1: Constant Specific Heats (Approximate Analysis) 
for Isentropic Processes of Ideal Gases

𝑇!
𝑇" 4516$4%*$%

=
𝑣"
𝑣!

23"

𝑇!
𝑇" 4516$4%*$%

=
𝑃!
𝑃"

23"
2

𝑃!
𝑃" 4516$4%*$%

=
𝑣"
𝑣!

2
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• Approach 1: Constant Specific Heats (Approximate Analysis) 
for Isentropic Processes of Ideal Gases

𝑇𝑣23" = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑇𝑃
"32
2 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑃𝑣2 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡
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• Approach 2: Variable Specific Heats (Exact Analysis) for 
Isentropic Processes of Ideal Gases

0 = 𝑠!- − 𝑠"- − 𝑅×ln(
𝑃!
𝑃"
)

𝑠!- = 𝑠"- + 𝑅×ln(
𝑃!
𝑃"
)

𝑠!- = 𝑠"- + 𝑅× ln
𝑃!
𝑃"

→
𝑃!
𝑃"
= exp(

𝑠!- − 𝑠"-

𝑅
)

(It will not be included in the exam)
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• Air enters an isentropic turbine at 150 psia and 900 °F 
through a 0.5 ft2 inlet section with a velocity of 500 ft/s. It 
leaves at 15 psia with a velocity of 100 ft/s. Calculate the air 
temperature at the turbine exit and the power produced, in 
hp, by this turbine.
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• Solution (assumptions):
q Steady flow 
q The process is isentropic (both reversible and adiabatic)
q Ideal gas with a constant specific heat
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• Solution (Tables):
q Table A-2Eb: @600 °𝐹 → 𝑐+ = 0.250 ,#-

./012
𝑎𝑛𝑑 𝑘 = 1.3777
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• Solution (Tables):
q Table A-1E: 𝑅 = 0.3704 +3!415#!

./012
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• Solution (Problem solving):

�̇� = �̇�" = �̇�!

�̇�#$ − �̇�6/% =
𝑑�̇�474%(8

𝑑𝑡
= 0

�̇� ℎ" + 𝑉"! = �̇� ℎ! +
𝑉!!

2
+ �̇�6/%

�̇�6/% = �̇� ℎ" − ℎ" +
𝑉"! − 𝑉!

2



Class Activity

26

• Solution (Calculations):

𝑇!
𝑇"
=

𝑃!
𝑃"

23"
2

→ 𝑇! = 𝑇"×
𝑃!
𝑃"

23"
2
= 900 + 460 𝑅

15 𝑝𝑠𝑖𝑎
150 𝑝𝑠𝑖𝑎

-.:;;;
".:;;

= 724 𝑅

𝑣" =
𝑅𝑇"
𝑃"

=
0.3704 𝑝𝑠𝑖𝑎 − 𝑓𝑡

:

𝑙𝑏𝑚 − 𝑅 900 + 460 𝑅

150 𝑝𝑠𝑖𝑎
= 3.358

𝑓𝑡:

𝑙𝑏𝑚

�̇� =
𝐴"𝑉"
𝑣"

=
0.5 𝑓𝑡! 500 𝑓𝑡𝑠

3.358 𝑓𝑡
:

𝑙𝑏𝑚

= 74.45
𝑙𝑏𝑚
𝑠
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• Solution (Calculations):

�̇�6/% = �̇� ℎ" − ℎ" +
𝑉"! − 𝑉!

2

�̇�"#$ = 74.45
𝑙𝑏𝑚
𝑠

[ 0.250
𝐵𝑡𝑢

𝑙𝑏𝑚 − 𝑅
1360 − 724𝑅 +

500 𝑓𝑡𝑠
%

2
−

100 𝑓𝑡𝑠
%

2

1 𝐵𝑡𝑢𝑙𝑏𝑚
25.037 𝑓𝑡

%

𝑠%

�̇�6/% = 12,194
𝐵𝑡𝑢
𝑠

1 ℎ𝑝

0.7068𝐵𝑡𝑢𝑠
= 17,250 ℎ𝑝
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• We did not cover 8-10, 8-11, and 8-12
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Power and Refrigeration Cycles
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• Two important applications for thermodynamics are:
q Power generation 
q Refrigeration

• Remember to produce work we need a cycle: 
q Power cycles for heat engines
q Refrigeration cycles for refrigerators, heat pumps, air conditioners

• Depending on the working fluid and its phases we can call 
them:
q Gas cycles 
q Vapor cycles 



BASIC CONSIDERATIONS IN THE 
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• We resemble most of actual cycles with internal 
irreversibilities and complexities with internal reversible 
cycles known as ideal cycles

𝜂%<('8*= =
𝑤$(%
𝑞#$

=
𝑊$(%

𝑄#$
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• Property diagrams such as T-s and P-V diagrams can serve 
as valuable aids in understanding and analysis of 
thermodynamics process:



THE CARNOT CYCLE AND ITS VALUE 
IN ENGINEERING
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• Carnot cycle has four main processes:
1. Isothermal heat addition
2. Isentropic expansion 
3. Isothermal heat rejection
4. Isentropic compression



The Carnot Cycle and Its Value in Engineering
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• Property diagrams such as T-s and P-V diagrams can serve 
as valuable aids in understanding and analysis of 
thermodynamics process:
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• (Derivation of the Efficiency of the Carnot Cycle): Show 
that the thermal efficiency of a Carnot cycle operating 
between limits of TH and TL is solely function of these two 
temperatures is equal to 𝜂efghijk,ljhmne = 1− o!

o"
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• Solution:



REFRIGERATORS AND HEAT PUMPS 
(SECTION 9-14 AND 9-15)
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Refrigerators and Heat Pumps
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• We looked at this in Chapter 7



Refrigerators and Heat Pumps
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• The Carnot cycle includes:



Refrigerators and Heat Pumps
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• The T-s diagram for the Carnot cycle is:



IDEAL VAPOR COMPRESSION 
REFRIGERATION CYCLE (SECTION 9-16)
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Ideal Vapor Compression Refrigeration Cycle
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• In practice, there are several issues that limit the use of 
Carnot vapor compression cycle:
q 1-2: Isentropic compression in a compressor
q 2-3: Constant pressure heat rejection in a condenser
q 3-4: Throttling in an expansion valve
q 4-1: Constant pressure heat absorption in an evaporator



Ideal Vapor Compression Refrigeration Cycle
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• In practice, there are several issues that limit the use of 
Carnot vapor compression cycle:



Ideal Vapor Compression Refrigeration Cycle
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• An ordinary refrigerator, has all the four main components:



Ideal Vapor Compression Refrigeration Cycle
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• P-h diagram is very helpful in analyzing the performance:

𝑞#$ − 𝑞6/% + 𝑤#$ − 𝑤6/% = ℎ( − ℎ#

𝐶𝑂𝑃0 =
𝑞>

𝑤$(%,#$
=
ℎ" − ℎ?
ℎ! − ℎ"

𝐶𝑂𝑃@A =
𝑞@

𝑤$(%,#$
=
ℎ! − ℎ:
ℎ! − ℎ"
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• A refrigerator uses refrigerant 134-a as the working fluid and 
operates on an ideal vapor-compression cycle between 0.14 
and 0.8 MPa. If the mass flow rate of the refrigerant is 0.05 
kg/s, determine
a) The rate of heat removal from the refrigerated space and the power 

input to the compressor
b) The rate of heat rejection to the environment
c) The COP of the refrigerator
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• Solution (assumption): 
q Steady operating condition exist
q Kinetic and potential energy are negligible 

• Understanding the states:
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• Solution: Reading properties from the tables:

𝑃" = 0.14 𝑀𝑃𝑎 → ℎ" = ℎ+ @ -."? CA* = 239.19
𝑘𝐽
𝑘𝑔

𝑠" = 𝑠+ @ -."? CA* = 0.94467
𝑘𝐽

𝑘𝑔 − 𝐾
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• Solution: Reading properties from the tables:

D
𝑃: = 0.8 𝑀𝑃𝑎

𝑠! = 𝑠" = 0.94467
𝑘𝐽

𝑘𝑔 − 𝐾
→. ℎ! = 275.40

𝑘𝐽
𝑘𝑔
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• Solution: Reading properties from the tables:

𝑃: = 0.8 𝑀𝑃𝑎 → ℎ: = ℎD @ -.E CA* = 95.48 2F
2+

ℎ? ≅ ℎ: 𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑖𝑛𝑔 → ℎ? = 95.48
𝑘𝐽
𝑘𝑔
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• Solution (a): The rate of heat removal from the refrigerated 
space and the power input to the compressor is

�̇�> = �̇� ℎ" − ℎ? = 0.05
𝑘𝑔
𝑠

239.19 − 95.48
𝑘𝐽
𝑘𝑔

= 7.19 𝑘𝑊

�̇�#$ = �̇� ℎ! − ℎ" = 0.05
𝑘𝑔
𝑠

275.40 − 239.19
𝑘𝐽
𝑘𝑔

= 1.18 𝑘𝑊
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• Solution (b): The rate of heat rejection from the refrigerant to 
the environment is:

�̇�@ = �̇� ℎ! − ℎ: = 0.05
𝑘𝑔
𝑠

275.40 − 95.48
𝑘𝐽
𝑘𝑔

= 9.00 𝑘𝑊

�̇�@ = �̇�> + �̇�#$ = 7.19 + 1.81 = 9.00 𝑘𝑊
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• Solution (c): The coefficient of performance of the 
refrigerator is:

𝐶𝑂𝑃0 =
�̇�>
�̇�#$

=
7.19 𝑘𝑊
1.81 𝑘𝑊

= 3.97

What would be the COP is the throttling process is isentropic? 



ACTUAL VAPOR-COMPRESSION 
REFRIGERATION CYCLE (SECTION 9-17)
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Actual Vapor-Compression Refrigeration Cycle
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• An actual vapor-compression refrigeration cycle varies from 
the ideal one because of two common sources of 
irreversibilities: 
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• (The actual vapor-compression refrigeration cycle –
almost similar inputs to the previous class activity): 
Refrigerant 134-a enters the compressor of a refrigerator as 
superheated vapor at 0.14 MPa and -10 °C at a rate of 0.05 
kg/s and leaves at 0.8 MPa and 50 °C. The refrigerant is 
cooled in the condenser to 26 °C and 0.72 MPa and id 
throttled to 0.15 MPa. Disregarding any heat transfer and 
pressure drops in the connecting lines between the 
components determine
a) The rate of heat removal from the refrigerated space and the power 

pressure drops in the connecting lines between the components
b) The isentropic efficiency of the compressor 
c) The coefficient of performance of the refrigerator
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• Solution (assumption): 
q Steady operating condition exist
q Kinetic and potential energy are negligible 
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• Solution (T-s diagram)
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• Solution (Tables and Calculations):

r𝑃" = 0.14 𝑀𝑃𝑎
𝑇" = −10 °𝐶 → ℎ" = 246.37

𝑘𝐽
𝑘𝑔
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• Solution (Tables and Calculations):

r𝑃" = 0.14 𝑀𝑃𝑎
𝑇" = −10 °𝐶 → ℎ" = 246.37

𝑘𝐽
𝑘𝑔

r
𝑃! = 0.8 𝑀𝑃𝑎
𝑇! = −50 °𝐶 → ℎ! = 286.71

𝑘𝐽
𝑘𝑔

r𝑃: = 0.72 𝑀𝑃𝑎
𝑇: = 26 °𝐶 → ℎ: ≅ ℎD @ !G °I = 87.83

𝑘𝐽
𝑘𝑔

rℎ? ≅ ℎ: = 87.83
𝑘𝐽
𝑘𝑔
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• Solution (a): The rate of heat removal from the refrigerated 
space and the power input to the compressor are:

�̇�> = �̇� ℎ" − ℎ? = 0.05
𝑘𝑔
𝑠

246.37 − 87.83
𝑘𝐽
𝑘𝑔

= 7.93 𝑘𝑊

�̇�#$ = �̇� ℎ! − ℎ" = 0.05
𝑘𝑔
𝑠

286.71 − 246.37
𝑘𝐽
𝑘𝑔

= 2.02 𝑘𝑊
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• Solution (b): The isentropic efficiency of the compressor is 
determined from:

• Where the enthalpy at state 2𝑠 (𝑃tu = 0.8 𝑀𝑃𝑎 and 𝑠tu =
𝑠v = 0.9724 wx

wyz{
) is 284.20 wx

wy
. Thus:

𝜂I ≅
ℎ!4 − ℎ"
ℎ! − ℎ"

𝜂I ≅
284.20 − 246.37
286.71 − 246.37

= 0.938 𝑜𝑟 93.8%
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• Solution (c): The coefficient of performance of the 
refrigerator is:

𝐶𝑂𝑃0 =
�̇�>
�̇�#$

=
7.93 𝑘𝑊
2.02 𝑘𝑊

= 3.93
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• Solve the previous example using P-h diagram (Figure A-14)
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• Solve the previous example using P-h diagram (ASHRAE)
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• Solve the previous example using P-h diagram (ASHRAE)


