CAE 208 Thermal-Fluids Engineering I MMAE 320: Thermodynamics

Fall 2022

November 22, 2022
 Entropy (iii)

Built
Environment
Research
@ IIT

Advancing energy, environmental, and
Dr. Mohammad Heidarinejad, Ph.D., P.E. Civil, Architectural and Environmental Engineering Illinois Institute of Technology muh182@iit.edu

ANNOUNCEMENTS

Announcements

- Updated syllabus:

Grading

For all students, course grades will be determined by the total number of points accumulated through assignments, exams, and course project. The percentage of total points required for various letter grades is also given. There is a 5% bonus points for those who attend all the classes.

Grading	Quantity	\% of Total for Each	\% of Total
Homework	9	1.875	15 (Best of eight)
Exams	3	35	70 (Best of two)*
Quizzes	Vary	Depends on the number of quizzes	15
Attendance	-	-	Max 5

Grading Scale	A	B	C	D	F
UG and G	90% and up	$80.0-89.9 \%$	$70.0-79.9 \%$	$60.0-69.9 \%$	$<60.0 \%$

* If the final exam grade is greater than the best of two exams, the entire final exam grade will be counted as 70 .

Announcements

- Assignment 9 is posted (extra assignment - if you have good assignment grades, no need to submit this one)

RECAP

Recap

- The Reversed Carnot Cycle
\square The Carnot heat-engine cycle is a totally reversible cycle

P-V diagram of the Carnot cycle

Recap

- The equality in the Clausius inequality holds for totally or just internally reversible cycles and the inequality for the irreversible ones

$$
\left(\oint \frac{\delta Q}{T}\right)_{\text {int,rev }}=0
$$

Recap

- Let's try to find out more about entropy with looking into a cycle:

$$
\begin{aligned}
& d S=\left(\oint \frac{\delta Q}{T}\right)_{r e v}\left(\frac{k J}{K}\right) \\
& \Delta S=S_{2}-S_{1}=\int_{1}^{2}\left(\frac{\delta Q}{T}\right)_{i n t, r e v}
\end{aligned}
$$

Recap

- A special case: Internally reversible isothermal heat transfer processes:

$$
\Delta S=\int_{1}^{2}\left(\frac{\delta Q}{T}\right)_{i n t, r e v}=\int_{1}^{2}\left(\frac{\delta Q}{T_{0}}\right)_{i n t, r e v}=\frac{1}{T_{0}} \int_{1}^{2} \delta Q_{i n t, r e v}
$$

$$
\Delta S_{i s o t h e r m a l}=\frac{Q}{T_{0}} \quad\left(\frac{k J}{K}\right)
$$

(A reservoir can absorb or supply heat indefinitely at a constant temperature)

Recap

- The Increase of Entropy Principle

$$
\begin{array}{ll}
\oint_{1}^{2}\left(\frac{\delta Q}{T}\right)_{A}+\oint_{2}^{1}\left(\frac{\delta Q}{T}\right)_{B}=0 \\
\oint_{1}^{2}\left(\frac{\delta Q}{T}\right)_{B}+\oint_{2}^{1}\left(\frac{\delta Q}{T}\right)_{C}<0 & \oint_{1}^{2}\left(\frac{\delta Q}{T}\right)_{A}>\oint_{2}^{1}\left(\frac{\delta Q}{T}\right)_{C} \\
& \oint_{1}^{2}\left(\frac{\delta Q}{T}\right)_{A}=\oint_{1}^{2}(d S)_{A}=\oint_{1}^{2}(d S)_{C} \\
& \oint_{1}^{2}(d S)_{C}>\oint_{2}^{1}\left(\frac{\delta Q}{T}\right)_{C} \\
& S_{2}-S_{1}>\oint_{2}^{1} \frac{\delta Q}{T}
\end{array}
$$

Recap

- For entropy, we can say

$$
\begin{aligned}
& d S=\left(\frac{\delta Q}{T}\right)_{r e v} \\
& d S>\left(\frac{\delta Q}{T}\right)_{i r r} \\
& d S=\frac{\delta Q}{T}+\delta S_{g e n}
\end{aligned}
$$

Recap

- The entropy of a fixed mass can be changed by:
\square Heat Transfer
\square Irreversibilities
- Entropy of a fixed mass does not change during a process that is internally reversible and adiabatic. During this process entropy remains constant and we call it isentropic process

$$
\Delta s=0 \text { or } s_{2}=s_{1} \quad\left(\frac{k J}{k g-K)}\right.
$$

PROPERTY DIAGRAMS INVOLVING ENTROPY

Property Diagrams Involving Entropy

- Property diagrams serve as great visual aids in the thermodynamic analysis of processes
- Based on the $2^{\text {nd }}$ law, we can plot new diagrams that involve entropy:
- Temperature-entropy
- Enthalpy-entropy

Property Diagrams Involving Entropy

- We can rearrange our entropy equation:

(The area under the process curve on a T-S diagram represents heat transfer during an internally reversible process)

Property Diagrams Involving Entropy

- Special cases:

Internally reversible isothermal process):

$$
Q_{\text {int }, \text { rev }}=T_{0} \Delta S \quad q_{\text {int }, \text { rev }}=T_{0} \Delta s
$$

T-s diagram for an isentropic process:

Property Diagrams Involving Entropy

- h-s diagram (could be helpful for steady flow of devices such as nozzles, compressors, turbines):

Property Diagrams Involving Entropy

- T-s diagram of water is given in the appendix:

Figure A-9

Property Diagrams Involving Entropy

- h -s diagram of steam is given in the appendix:

Figure A-10

CLASS ACTIVITY

Class Activity

- Show the Carnot cycle on a T-S diagram and indicate the areas that represent the heat supplied and rejected and the network in the diagram.

Class Activity

- Solution:

WHAT IS ENTROPY

What Is Entropy

- Entropy can be viewed as a measure of molecular disorder or molecular randomness (lowest in solid phase and highest in the gas phase)

What Is Entropy

- Oscillations in solid phase fade as temperature is decreased, and the molecules supposedly become motionless at absolute zero. This represents a state of ultimate molecular order (and minimum energy).
- The entropy of a pure crystalline substance at absolute zero temperature is zero since there is no uncertainty about the state of the molecules at that instant (3rd law of thermodynamics)

```
Pure crystal
    T=0 K
```

Entropy $=0$

What Is Entropy

- The third law of thermodynamics provide an absolute reference point for the determination of entropy
- The entropy determined relative to this point is called absolute entropy and it is extremely useful in the thermodynamics analysis of entropy
- The entropy of a substance that is not pure crystalline (such as a solid solution) is not zero at absolute zero temperature

What Is Entropy

- A few examples:

THE T DS RELATIONS

The T ds Relations

- The first T ds (or Gibbs) equation (closed stationary system):

$$
\begin{array}{lr}
\delta Q_{\text {int,rev }}-\delta W_{\text {int,rev,out }}=d U & T d S=d U+P d V \\
\delta Q_{\text {int,rev }}=T d s & (\mathrm{~kJ}) \tag{kJ}\\
& T d s=d u+P d v \quad\left(\frac{\mathrm{~kJ}}{\mathrm{~kg}}\right) \\
\delta W_{\text {int,rev,out }}=P d V & \\
\\
\\
\left.\begin{array}{ll}
\\
\\
h d s=d u+P d v \\
h=u+P v \rightarrow d h=d u+P d v+v d P
\end{array}\right\} \rightarrow T d s=d h-v d P
\end{array}
$$

The T ds Relations

- Use the first T ds (or Gibbs) equation to solve for entropy changes

$$
\begin{aligned}
& d s=\frac{d u}{T}+\frac{P d v}{T} \\
& d s=\frac{d u}{T}-\frac{v d P}{T}
\end{aligned}
$$

ENTROPY CHANGE OF LIQUIDS AND SOLIDS

Entropy Change of Liquids and Solids

- Liquids and solids can be approximated as incompressible substances ($d v \cong 0 \& c_{p}=c_{v}=c_{p}=c$):

$$
\begin{aligned}
& d s=\frac{d u}{T}-\frac{v d P}{T} \\
& s_{2}-s_{1}=\int_{1}^{2} c(T) \frac{d T}{T} \cong c_{\text {avg }} \ln \left(\frac{T_{2}}{T_{1}}\right) \\
& s_{2}-s_{1}=\int_{1}^{2} c(T) \frac{d T}{T} \cong c_{\text {avg }} \ln \left(\frac{T_{2}}{T_{1}}\right)=0 \rightarrow T_{2}=T_{1}
\end{aligned}
$$

CLASS ACTIVITY

Class Activity

- Liquid methane is commonly used in various cryogenic applications. The critical temperature of methane is 191 K (or ~$82^{\circ} \mathrm{C}$) and thus methane must be maintained below 191 K to keep it in liquid phase. The properties of liquid methane at various temperature and pressure are given in Table below. Determine the entropy change of liquid methane as it undergoes a process from 110 K and 1 MPa to 120 K and 5 MPa .
a) Using tabulated properties
b) Approximating liquid methane as an incompressible substance?

Properties of liquid methane

Temp., $T, \mathrm{~K}$	Pressure, P, MPa	Density, $\rho, \mathrm{kg} / \mathrm{m}^{3}$	Enthalpy, $h, \mathrm{~kJ} / \mathrm{kg}$	Entropy, $s, \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$	Specific heat, $c_{p}, \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$
110	0.5	425.3	208.3	4.878	3.476
	1.0	425.8	209.0	4.875	3.471
	2.0	426.6	210.5	4.867	3.460
120	4.0	429.1	215.0	4.844	3.432
	1.0	410.4	243.4	5.185	3.551
	2.0	412.0	244.1	5.180	3.543
	5.0	415.2	249.6	5.145	3.528

Class Activity

- Solutions (a):

$$
\begin{aligned}
& \left.\begin{array}{l}
P_{1}=1 \mathrm{MPa} \\
T_{1}=110 \mathrm{~K}
\end{array}\right\} \rightarrow \begin{array}{l}
s_{1}=4.875 \frac{\mathrm{~kJ}}{\mathrm{kg-K}} \\
c_{p 1}=3.471 \frac{\mathrm{~kJ}}{\mathrm{~kg}-\mathrm{K}}
\end{array} \\
& \left.\begin{array}{l}
P_{2}=5 \mathrm{MPa} \\
T_{2}=120 \mathrm{~K}
\end{array}\right\} \rightarrow \begin{array}{l}
s_{1}=5.145 \frac{\mathrm{~kJ}}{\mathrm{~kg}-\mathrm{K}} \\
c_{p 1}=3.486 \frac{\mathrm{~kJ}}{\mathrm{~kg}-\mathrm{K}}
\end{array}
\end{aligned}
$$

$$
\Delta s=s_{2}-s_{1}=5.145-4.875=0.270 \frac{\mathrm{~kJ}}{\mathrm{~kg}-K}
$$

Class Activity

- Solutions (b):

$$
\begin{aligned}
& c_{a v g}=\frac{c_{p 1}+c_{p 2}}{2}=\frac{3.471+3.486}{2}=3.4785 \frac{\mathrm{~kJ}}{\mathrm{~kg}-\mathrm{K}} \\
& \Delta s=c_{a v g} \ln \left(\frac{T_{2}}{T_{1}}\right)=\left(3.4785 \frac{\mathrm{~kJ}}{\mathrm{~kg}-\mathrm{K}}\right) \ln \left(\frac{120 \mathrm{~K}}{110 \mathrm{~K}}\right)=0.303 \frac{\mathrm{~kJ}}{\mathrm{~kg}-\mathrm{K}}
\end{aligned}
$$

Class Activity

- Solutions (error):

$$
\text { Error }=\frac{\Delta s_{\text {actual }}-\Delta_{\text {ideal }}}{\Delta s_{\text {actual }}}=\frac{|0.27-0.303|}{0.270}=0.122(\text { or } 12.2 \%)
$$

THE ENTROPY CHANGE OF IDEAL GASES

The Entropy Change of Ideal Gases

- For gases, we can write:

$$
\begin{aligned}
& d s=\frac{d u}{T}-\frac{v d P}{T}=c_{v} \frac{d T}{T}+R \frac{d v}{v} \\
& s_{2}-s_{1}=\int_{1}^{2} c_{v}(T) \frac{d T}{T}+R \ln \left(\frac{v_{2}}{v_{1}}\right)
\end{aligned}
$$

$$
s_{2}-s_{1}=\int_{1}^{2} c_{p}(T) \frac{d T}{T}+R \ln \left(\frac{P_{2}}{P_{1}}\right)
$$

The Entropy Change of Ideal Gases

- Approach 1: Constant Specific Heats (Approximate Analysis):

$$
\begin{aligned}
& s_{2}-s_{1}=\int_{1}^{2} c_{v}(T) \frac{d T}{T}+R \ln \left(\frac{v_{2}}{v_{1}}\right) \\
& s_{2}-s_{1}=c_{v, a v g} \ln \left(\frac{T_{2}}{T_{1}}\right)+R \times \ln \left(\frac{v_{2}}{v_{1}}\right) \\
& \left\{\begin{array}{c}
d h=c_{p} d T \\
v=\frac{R T}{P}
\end{array} \rightarrow s_{2}-s_{1}=c_{p, a v g} \times \ln \left(\frac{T_{2}}{T_{1}}\right)-R \times \ln \left(\frac{P_{2}}{P_{1}}\right)\right.
\end{aligned}
$$

The Entropy Change of Ideal Gases

- Approach 1: Constant Specific Heats (Approximate Analysis): We can express in unit-mole basis:

$$
\begin{gathered}
\overline{s_{2}}-\overline{s_{1}}=\overline{c_{v, a v g}} \ln \left(\frac{T_{2}}{T_{1}}\right)+R_{u} \times \ln \left(\frac{v_{2}}{v_{1}}\right) \\
\overline{s_{2}}-\overline{s_{1}}=\overline{c_{p, a v g}} \ln \left(\frac{T_{2}}{T_{1}}\right)-R_{u} \times \ln \left(\frac{P_{2}}{P_{1}}\right)
\end{gathered}
$$

The Entropy Change of Ideal Gases

- Approach 2: Variable Specific Heats (Exact Analysis):

$$
\begin{aligned}
& s^{0}=\int_{0}^{T} c_{p}(T) \frac{d T}{T} \\
& \int_{0}^{T} c_{p}(T) \frac{d T}{T}=s_{2}^{0}-s_{1}^{0} \\
& s_{2}-s_{1}=s_{2}^{0}-s_{1}^{0}-R \times \ln \left(\frac{P_{2}}{P_{1}}\right) \\
& \overline{s_{2}}-\overline{s_{1}}=\overline{s_{2}^{0}}-\overline{s_{1}^{0}}-R_{u} \times \ln \left(\frac{P_{2}}{P_{1}}\right)
\end{aligned}
$$

The Entropy Change of Ideal Gases

- Approach 2: Variable Specific Heats (Exact Analysis):

CLASS ACTIVITY

Class Activity

- Air is compressed from an initial state of 100 kPa and $17^{\circ} \mathrm{C}$ to a final state of 600 kPa and $57^{\circ} \mathrm{C}$. Determine the entropy change of air during this compression process by using:
a) Property values from the air table
b) Average specific heats

Class Activity

- Solution (assumptions):
\square Air is an ideal gas since it is at a high temperature and low pressure relative to its critical point values

Class Activity

- Solution (calculations):
\square Part (a): Table A-21
$s_{2}-s_{1}=s_{2}^{0}-s_{1}^{0}-R \times \ln \left(\frac{P_{2}}{P_{1}}\right)=\left[(1.79783-1.66802) \frac{k J}{k g-K}\right] \times \ln \left(\frac{600 \mathrm{kPa}}{100 \mathrm{kPa}}\right)$
$s_{2}-s_{1}=-0.3844 \frac{k J}{k g-K}$
\square Part (b): Using a c_{p} value at the average temperature of $37^{\circ} \mathrm{C}$ (Table A-2b)

$$
\begin{aligned}
& s_{2}-s_{1}=c_{p, a v g} \ln \left(\frac{T_{2}}{T_{1}}\right)-R \times \ln \left(\frac{P_{2}}{P_{1}}\right) \\
& =\left(1.006 \frac{\mathrm{~kJ}}{\mathrm{~kg}-K}\right) \ln \left(\frac{330 \mathrm{~K}}{290 \mathrm{~K}}\right)-\left(0.287 \frac{\mathrm{~kJ}}{\mathrm{~kg}-\mathrm{K}}\right) \ln \left(\frac{600 \mathrm{kPa}}{100 \mathrm{kPa}}\right)=-0.3842 \frac{\mathrm{~kJ}}{\mathrm{~kg}-\mathrm{K}}
\end{aligned}
$$

The Entropy Change of Ideal Gases

- Approach 1: Constant Specific Heats (Approximate Analysis) for Isentropic Processes of Ideal Gases

$$
\begin{aligned}
& \ln \left(\frac{T_{2}}{T_{1}}\right)=-\frac{R}{c_{v}} \ln \left(\frac{v_{2}}{v_{1}}\right) \\
& \ln \left(\frac{T_{2}}{T_{1}}\right)=\ln \left(\frac{v_{1}}{v_{2}}\right)^{\frac{R}{c_{v}}} \\
& \frac{T_{2}}{T_{1}}=\left(\frac{v_{1}}{v_{2}}\right)^{k-1}
\end{aligned}
$$

$$
\left\{\begin{array}{l}
c_{p}-c_{v}=R \\
k=\frac{c_{p}}{c_{v}}
\end{array} \rightarrow \frac{R}{c_{v}}=k-1\right.
$$

The Entropy Change of Ideal Gases

- Approach 1: Constant Specific Heats (Approximate Analysis) for Isentropic Processes of Ideal Gases

$$
\begin{aligned}
& \left(\frac{T_{2}}{T_{1}}\right)_{s=\text { constant }}=\left(\frac{v_{1}}{v_{2}}\right)^{k-1} \\
& \left(\frac{T_{2}}{T_{1}}\right)_{s=\text { constant }}=\left(\frac{P_{2}}{P_{1}}\right)^{\frac{k-1}{k}} \\
& \left(\frac{P_{2}}{P_{1}}\right)_{s=\text { constant }}=\left(\frac{v_{1}}{v_{2}}\right)^{k}
\end{aligned}
$$

The Entropy Change of Ideal Gases

- Approach 1: Constant Specific Heats (Approximate Analysis) for Isentropic Processes of Ideal Gases

$$
\begin{aligned}
& T v^{k-1}=\text { Constant } \\
& T P^{\frac{1-k}{k}}=\text { Constant } \\
& P v^{k}=\text { Constant }
\end{aligned}
$$

The Entropy Change of Ideal Gases

- Approach 2: Variable Specific Heats (Exact Analysis) for Isentropic Processes of Ideal Gases

$$
\begin{aligned}
& 0=s_{2}^{0}-s_{1}^{0}-R \times \ln \left(\frac{P_{2}}{P_{1}}\right) \\
& s_{2}^{0}=s_{1}^{0}+R \times \ln \left(\frac{P_{2}}{P_{1}}\right) \\
& s_{2}^{0}=s_{1}^{0}+R \times \ln \left(\frac{P_{2}}{P_{1}}\right) \rightarrow \frac{P_{2}}{P_{1}}=\exp \left(\frac{s_{2}^{0}-s_{1}^{0}}{R}\right)
\end{aligned}
$$

Class Activity

- Air enters an isentropic turbine at 150 psia and $900^{\circ} \mathrm{F}$ through a $0.5 \mathrm{ft}^{2}$ inlet section with a velocity of $500 \mathrm{ft} / \mathrm{s}$. It leaves at 15 psia with a velocity of $100 \mathrm{ft} / \mathrm{s}$. Calculate the air temperature at the turbine exit and the power produced, in hp , by this turbine.

Class Activity

- Solution (assumptions):
- Steady flow

The process is isentropic (both reversible and adiabatic)
Ideal gas with a constant specific heat

Class Activity

- Solution (Problem solving):
\square Table A-2Eb: @ $600^{\circ} \mathrm{F} \rightarrow c_{p}=0.250 \frac{\mathrm{Btu}}{\mathrm{lbm-R}}$ and $k=1.3777$
\square Table A-1E: $R=0.3704 \frac{p s i a-f t^{3}}{l b m-R}$

$$
\begin{aligned}
& \dot{m}=\dot{m}_{1}=\dot{m}_{2} \\
& \dot{E}_{\text {in }}-\dot{E}_{\text {out }}=\frac{d \dot{E}_{\text {system }}}{d t}=0 \\
& \dot{m}\left(h_{1}+V_{1}^{2}\right)=\dot{m}\left(h_{2}+\frac{V_{2}^{2}}{2}\right)+\dot{W}_{\text {out }} \\
& \dot{W}_{\text {out }}=\dot{m}\left(h_{1}-h_{1}+\frac{V_{1}^{2}-V_{2}}{2}\right)
\end{aligned}
$$

Class Activity

- Solution (Calculations):
$\frac{T_{2}}{T_{1}}=\left(\frac{P_{2}}{P_{1}}\right)^{\frac{k-1}{k}} \rightarrow T_{2}=T_{1} \times\left(\frac{P_{2}}{P_{1}}\right)^{\frac{k-1}{k}}=(900+460 \mathrm{R})\left(\frac{15 \mathrm{psia}}{150 \mathrm{psia}}\right)^{\frac{0.3777}{1.377}}=724 \mathrm{R}$
$\left.v_{1}=\frac{R T_{1}}{P_{1}}=\frac{\left(0.3704 \frac{p s i a}{l b m}-f t^{3}\right.}{l b m}\right)(900+460 R), 3.358 \frac{f t^{3}}{150 \mathrm{psia}}$
$m=\frac{A_{1} V_{1}}{v_{1}}=\frac{\left(0.5 f t^{2}\right)\left(500 \frac{f t}{s}\right)}{3.358 \frac{f t^{3}}{l b m}}=74.45 \frac{\mathrm{lbm}}{\mathrm{s}}$

Class Activity

- Solution (Calculations):

$$
\left.\begin{array}{l}
\dot{W}_{\text {out }}=\dot{m}\left(h_{1}-h_{1}+\frac{V_{1}^{2}-V_{2}}{2}\right) \\
\dot{W}_{\text {out }}=\left(74.45 \frac{\mathrm{lbm}}{\mathrm{~s}}\right)\left[\left(0.250 \frac{B t u}{l b m-R}\right)(1360-724 R)+\left(\frac{\left(500 \frac{f t}{s}\right)^{2}}{2}-\frac{\left(100 \frac{f t}{s}\right)^{2}}{2}\right)\left(\frac{1 \frac{B t u}{l b m}}{25.037} f^{2}\right.\right. \\
s^{2}
\end{array}\right)
$$

$$
\dot{W}_{\text {out }}=12,194 \frac{B t u}{s}\left(\frac{1 \mathrm{hp}}{0.7068 \frac{B t u}{s}}\right)=17,250 \mathrm{hp}
$$

REVERSIBLE STEADY-FLOW WORK

Reversible Steady-Flow Work

- Recall we had

$$
W_{b}=\int_{1}^{2} P d V
$$

- For steady flow:

$$
\begin{aligned}
& \delta q_{r e v}-\delta w_{r e v}=d h+d k e+d p e \\
& \left.\begin{array}{l}
\delta q_{r e v}=T d \\
T d s=d h-v d P
\end{array}\right\} \rightarrow \delta q_{r e v}=d h-v d P \\
& \qquad-\delta w_{r e v}=v d P+d k e+d p e \\
& w_{r e v}=-\int_{1}^{2} v d P-\Delta k e-\Delta p e
\end{aligned}
$$

Reversible Steady-Flow Work

- For steady flow:

$$
w_{r e v}=-\int_{1}^{2} v d P-\Delta k e-\Delta p e
$$

(a) Steady-flow system

(b) Closed system

Reversible Steady-Flow Work

- We write the Bernoulli equation:

$$
w_{\text {rev }}=0=v\left(P_{2}-P_{1}\right)+\left(\frac{V_{2}^{2}-V_{1}^{2}}{2}\right)+g\left(z_{2}-z_{1}\right)
$$

Reversible Steady-Flow Work

- Steady-flow devices deliver the most and consume the least work when the process is reversible:

