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• Updated syllabus:



Announcements
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• Assignment 9 is posted (extra assignment – if you have good 
assignment grades, no need to submit this one)
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• The Reversed Carnot Cycle
q The Carnot heat-engine cycle is a totally reversible cycle

P-V diagram of the Carnot cycle



Recap
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• The equality in the Clausius inequality holds for totally or 
just internally reversible cycles and the inequality for the 
irreversible ones

!
𝛿𝑄
𝑇

!"#,%&'

= 0
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• Let’s try to find out more about entropy with looking into a 
cycle: 

𝑑𝑆 = $
𝛿𝑄
𝑇

!"#

(
𝑘𝐽
𝐾
)

Δ𝑆 = 𝑆$ − 𝑆% = /
%

$ 𝛿𝑄
𝑇 &'(,!"#
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• A special case: Internally reversible isothermal heat transfer 
processes:

Δ𝑆 = /
%

$ 𝛿𝑄
𝑇 &'(,!"#

= /
%

$ 𝛿𝑄
𝑇* &'(,!"#

=
1
𝑇*
/
%

$
𝛿𝑄&'(,!"#

Δ𝑆&+,(-"!./0 =
𝑄
𝑇*

𝑘𝐽
𝐾

(A reservoir can absorb or supply heat indefinitely at a constant temperature)
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• The Increase of Entropy Principle

$
%

$ 𝛿𝑄
𝑇 1

+ $
$

% 𝛿𝑄
𝑇 2

= 0
1

2
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Cirr

$
%

$ 𝛿𝑄
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$

% 𝛿𝑄
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$
%
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$
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∮%
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=∮%

$ 𝑑𝑆 1 = ∮%
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$
%

$
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$

% 𝛿𝑄
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% 𝛿𝑄
𝑇
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• For entropy, we can say

𝑑𝑆 >
𝛿𝑄
𝑇 !%%

𝑑𝑆 =
𝛿𝑄
𝑇
+ 𝛿𝑆(&"

𝑑𝑆 =
𝛿𝑄
𝑇 %&'
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• The entropy of a fixed mass can be changed by:
q Heat Transfer 
q Irreversibilities

• Entropy of a fixed mass does not change during a process 
that is internally reversible and adiabatic. During this process 
entropy remains constant and we call it isentropic process

Δ𝑠 = 0 𝑜𝑟 𝑠$ = 𝑠% (
𝑘𝐽

𝑘𝑔 − 𝐾)
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Property Diagrams Involving Entropy
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• Property diagrams serve as great visual aids in the 
thermodynamic analysis of processes

• Based on the 2nd law, we can plot new diagrams that involve 
entropy:
q Temperature-entropy
q Enthalpy-entropy



Property Diagrams Involving Entropy
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• We can rearrange our entropy equation:

𝛿𝑄!"#,%&' = 𝑇 𝑑𝑆 𝑄!"#,%&' = +
)

*
𝑇 𝑑𝑆 (𝑘𝐽)

(The area under the process curve on a T-S diagram represents heat transfer 
during an internally reversible process)

𝛿𝑞!"#,%&' = 𝑇 𝑑𝑠 𝑞!"#,%&' = +
)

*
𝑇 𝑑𝑠 (

𝑘𝐽
𝑘𝑔
)
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• Special cases:
q Internally reversible isothermal process): 

q T-s diagram for an isentropic process: 

𝑄!"#,%&' = 𝑇+Δ𝑆 𝑞!"#,%&' = 𝑇+Δ𝑠
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• h-s diagram (could be helpful for steady flow of devices such 
as nozzles, compressors, turbines):



Property Diagrams Involving Entropy
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• T-s diagram of water is given in the appendix:

Figure A-9
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• h-s diagram of steam is given in the appendix:

Figure A-10
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• Show the Carnot cycle on a T-S diagram and indicate the 
areas that represent the heat supplied and rejected and the 
network in the diagram.



Class Activity
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• Solution:



WHAT IS ENTROPY
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What Is Entropy
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• Entropy can be viewed as a measure of molecular disorder 
or molecular randomness (lowest in solid phase and highest 
in the gas phase)



What Is Entropy
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• Oscillations in solid phase fade as temperature is 
decreased, and the molecules supposedly become 
motionless at absolute zero. This represents a state of 
ultimate molecular order (and minimum energy).

• The entropy of a pure crystalline substance at absolute zero 
temperature is zero since there is no uncertainty about the 
state of the molecules at that instant (3rd law of 
thermodynamics)



What Is Entropy
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• The third law of thermodynamics provide an absolute 
reference point for the determination of entropy 

• The entropy determined relative to this point is called 
absolute entropy and it is extremely useful in the 
thermodynamics analysis of entropy 

• The entropy of a substance that is not pure crystalline (such 
as a solid solution) is not zero at absolute zero temperature 



What Is Entropy
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• A few examples: 



THE T DS RELATIONS
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The T ds Relations
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• The first T ds (or Gibbs) equation (closed stationary 
system):
𝛿𝑄&'(,!"# − 𝛿𝑊&'(,!"#,,7( = 𝑑𝑈

𝛿𝑄&'(,!"# = 𝑇𝑑𝑠

𝛿𝑊&'(,!"#,,7( = 𝑃𝑑𝑉

𝑇𝑑𝑆 = 𝑑𝑈 + 𝑃𝑑𝑉 (𝑘𝐽)

𝑇𝑑𝑠 = 𝑑𝑢 + 𝑃𝑑𝑣 (
𝑘𝐽
𝑘𝑔
)

@𝑇𝑑𝑠 = 𝑑𝑢 + 𝑃𝑑𝑣
ℎ = 𝑢 + 𝑃𝑣 → 𝑑ℎ = 𝑑𝑢 + 𝑃𝑑𝑣 + 𝑣𝑑𝑃 → 𝑇𝑑𝑠 = 𝑑ℎ − 𝑣𝑑𝑃



The T ds Relations
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• Use the first T ds (or Gibbs) equation to solve for entropy 
changes

𝑑𝑠 =
𝑑𝑢
𝑇
+
𝑃𝑑𝑣
𝑇

𝑑𝑠 =
𝑑𝑢
𝑇
−
𝑣𝑑𝑃
𝑇



ENTROPY CHANGE OF LIQUIDS AND 
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Entropy Change of Liquids and Solids
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• Liquids and solids can be approximated as incompressible 
substances (𝑑𝑣 ≅ 0 & 𝑐C = 𝑐D = 𝑐C = 𝑐):

𝑑𝑠 =
𝑑𝑢
𝑇
−
𝑣𝑑𝑃
𝑇

𝑠$ − 𝑠% = /
%

$
𝑐 𝑇

𝑑𝑇
𝑇
≅ 𝑐/#8 ln(

𝑇$
𝑇%
)

𝑠$ − 𝑠% = /
%

$
𝑐 𝑇

𝑑𝑇
𝑇
≅ 𝑐/#8 ln

𝑇$
𝑇%

= 0 → 𝑇$ = 𝑇% (For isentropic)
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• Liquid methane is commonly used in various cryogenic 
applications. The critical temperature of methane is 191 K (or ~ -
82 °C) and thus methane must be maintained below 191 K to 
keep it in liquid phase. The properties of liquid methane at 
various temperature and pressure are given in Table below. 
Determine the entropy change of liquid methane as it undergoes 
a process from 110 K and 1 MPa to 120 K and 5 MPa. 
a) Using tabulated properties 
b) Approximating liquid methane as an incompressible substance?
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• Solutions (a):

I𝑃% = 1 𝑀𝑃𝑎
𝑇% = 110 𝐾 →

𝑠% = 4.875 9:
98;<

𝑐=% = 3.471 9:
98;<

I𝑃$ = 5𝑀𝑃𝑎
𝑇$ = 120 𝐾 →

𝑠% = 5.145 9:
98;<

𝑐=% = 3.486 9:
98;<

Δ𝑠 = 𝑠$ − 𝑠% = 5.145 − 4.875 = 0.270
𝑘𝐽

𝑘𝑔 − 𝐾
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• Solutions (b):

Δ𝑠 = 𝑐/#8 ln
𝑇$
𝑇%

= (3.4785
𝑘𝐽

𝑘𝑔 − 𝐾
)𝐿𝑛

120𝐾
110𝐾

= 0.303
𝑘𝐽

𝑘𝑔 − 𝐾

𝑐/#8 =
𝑐=% + 𝑐=$

2
=
3.471 + 3.486

2
= 3.4785

𝑘𝐽
𝑘𝑔 − 𝐾
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• Solutions (error):

𝐸𝑟𝑟𝑜𝑟 =
Δ𝑠/>(7/0 − Δ&?"/0

Δ𝑠/>(7/0
=
|0.27 − 0.303|

0.270
= 0.122 (𝑜𝑟 12.2%)
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The Entropy Change of Ideal Gases
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• For gases, we can write: 

𝑑𝑠 =
𝑑𝑢
𝑇
−
𝑣𝑑𝑃
𝑇

= 𝑐#
𝑑𝑇
𝑇
+ 𝑅

𝑑𝑣
𝑣

𝑠$ − 𝑠% = /
%

$
𝑐# 𝑇

𝑑𝑇
𝑇
+ 𝑅 ln(

𝑣$
𝑣%
)

𝑠$ − 𝑠% = /
%

$
𝑐= 𝑇

𝑑𝑇
𝑇
+ 𝑅 ln(

𝑃$
𝑃%
)



The Entropy Change of Ideal Gases

40

• Approach 1: Constant Specific Heats (Approximate Analysis):

𝑠$ − 𝑠% = /
%

$
𝑐# 𝑇

𝑑𝑇
𝑇
+ 𝑅 ln(

𝑣$
𝑣%
)

𝑠$ − 𝑠% = 𝑐#,/#8 ln
𝑇$
𝑇%

+ 𝑅×𝑙𝑛
𝑣$
𝑣%

\
𝑑ℎ = 𝑐=𝑑𝑇

𝑣 =
𝑅𝑇
𝑃

→ 𝑠$ − 𝑠% = 𝑐=,/#8× ln
𝑇$
𝑇%

− 𝑅×ln(
𝑃$
𝑃%
)



The Entropy Change of Ideal Gases
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• Approach 1: Constant Specific Heats (Approximate Analysis): 
We can express in unit-mole basis:

]𝑠$ − ]𝑠% = 𝑐#,/#8 ln
𝑇$
𝑇%

+ 𝑅7×𝑙𝑛
𝑣$
𝑣%

]𝑠$ − ]𝑠% = 𝑐=,/#8 ln
𝑇$
𝑇%

− 𝑅7×𝑙𝑛
𝑃$
𝑃%



The Entropy Change of Ideal Gases
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• Approach 2: Variable Specific Heats (Exact Analysis):

𝑠* = /
*

6
𝑐= 𝑇

𝑑𝑇
𝑇

/
*

6
𝑐= 𝑇

𝑑𝑇
𝑇
= 𝑠$* − 𝑠%*

𝑠$ − 𝑠% = 𝑠$* − 𝑠%* − 𝑅×ln(
𝑃$
𝑃%
)

]𝑠$ − ]𝑠% = 𝑠$* − 𝑠%* − 𝑅7×ln(
𝑃$
𝑃%
)



The Entropy Change of Ideal Gases
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• Approach 2: Variable Specific Heats (Exact Analysis):
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44



Class Activity

45

• Air is compressed from an initial state of 100 kPa and 17 °C 
to a final state of 600 kPa and 57 °C. Determine the entropy 
change of air during this compression process by using:

a) Property values from the air table
b) Average specific heats 



Class Activity
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• Solution (assumptions):
q Air is an ideal gas since it is at a high temperature and 

low pressure relative to its critical point values 



Class Activity
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• Solution (calculations):
q Part (a): Table A-21

q Part (b): Using a cp value at the average temperature of 37 °C (Table 
A-2b)

𝑠$ − 𝑠% = 𝑠$* − 𝑠%* − 𝑅× ln
𝑃$
𝑃%

= 1.79783 − 1.66802
𝑘𝐽

𝑘𝑔 − 𝐾
×ln(

600 𝑘𝑃𝑎
100 𝑘𝑃𝑎

)

𝑠$ − 𝑠% = −0.3844
𝑘𝐽

𝑘𝑔 − 𝐾

𝑠$ − 𝑠% = 𝑐=,/#8 ln
𝑇$
𝑇%

− 𝑅× ln
𝑃$
𝑃%

= 1.006
𝑘𝐽

𝑘𝑔 − 𝐾
ln

330 𝐾
290 𝐾

− 0.287
𝑘𝐽

𝑘𝑔 − 𝐾
ln

600 𝑘𝑃𝑎
100 𝑘𝑃𝑎

= −0.3842
𝑘𝐽

𝑘𝑔 − 𝐾



The Entropy Change of Ideal Gases
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• Approach 1: Constant Specific Heats (Approximate Analysis) 
for Isentropic Processes of Ideal Gases

ln
𝑇$
𝑇%

= −
𝑅
𝑐#
ln(
𝑣$
𝑣%
)

ln
𝑇$
𝑇%

= ln
𝑣%
𝑣$

@
>! _

𝑐= − 𝑐# = 𝑅

𝑘 =
𝑐=
𝑐#

→
𝑅
𝑐#
= 𝑘 − 1

𝑇$
𝑇%
=

𝑣%
𝑣$

9;%
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• Approach 1: Constant Specific Heats (Approximate Analysis) 
for Isentropic Processes of Ideal Gases

𝑇$
𝑇% +A>,'+(/'(

=
𝑣%
𝑣$

9;%

𝑇$
𝑇% +A>,'+(/'(

=
𝑃$
𝑃%

9;%
9

𝑃$
𝑃% +A>,'+(/'(

=
𝑣%
𝑣$

9



The Entropy Change of Ideal Gases
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• Approach 1: Constant Specific Heats (Approximate Analysis) 
for Isentropic Processes of Ideal Gases

𝑇𝑣9;% = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑇𝑃
%;9
9 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑃𝑣9 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡



The Entropy Change of Ideal Gases
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• Approach 2: Variable Specific Heats (Exact Analysis) for 
Isentropic Processes of Ideal Gases

0 = 𝑠$* − 𝑠%* − 𝑅×ln(
𝑃$
𝑃%
)

𝑠$* = 𝑠%* + 𝑅×ln(
𝑃$
𝑃%
)

𝑠$* = 𝑠%* + 𝑅× ln
𝑃$
𝑃%

→
𝑃$
𝑃%
= exp(

𝑠$* − 𝑠%*

𝑅
)
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• Air enters an isentropic turbine at 150 psia and 900 °F 
through a 0.5 ft2 inlet section with a velocity of 500 ft/s. It 
leaves at 15 psia with a velocity of 100 ft/s. Calculate the air 
temperature at the turbine exit and the power produced, in 
hp, by this turbine.
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• Solution (assumptions):
q Steady flow 
q The process is isentropic (both reversible and adiabatic)
q Ideal gas with a constant specific heat
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• Solution (Problem solving):
q Table A-2Eb: @600 °𝐹 → 𝑐, = 0.250 -#.

/0123
𝑎𝑛𝑑 𝑘 = 1.3777

q Table A-1E: 𝑅 = 0.3704 ,4!526#!

/0123

𝑚̇ = 𝑚̇% = 𝑚̇$

𝐸̇&' − 𝐸̇,7( =
𝑑𝐸̇+B+(".

𝑑𝑡
= 0

𝑚̇ ℎ% + 𝑉%$ = 𝑚̇ ℎ$ +
𝑉$$

2
+ 𝑊̇,7(

𝑊̇,7( = 𝑚̇ ℎ% − ℎ% +
𝑉%$ − 𝑉$

2
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• Solution (Calculations):

𝑇$
𝑇%
=

𝑃$
𝑃%

9;%
9

→ 𝑇$ = 𝑇%×
𝑃$
𝑃%

9;%
9
= 900 + 460 𝑅

15 𝑝𝑠𝑖𝑎
150 𝑝𝑠𝑖𝑎

*.DEEE
%.DEE

= 724 𝑅

𝑣% =
𝑅𝑇%
𝑃%

=
0.3704 𝑝𝑠𝑖𝑎 − 𝑓𝑡

D

𝑙𝑏𝑚 − 𝑅 900 + 460 𝑅

150 𝑝𝑠𝑖𝑎
= 3.358

𝑓𝑡D

𝑙𝑏𝑚

𝑚 =
𝐴%𝑉%
𝑣%

=
0.5 𝑓𝑡$ 500 𝑓𝑡𝑠

3.358 𝑓𝑡
D

𝑙𝑏𝑚

= 74.45
𝑙𝑏𝑚
𝑠
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• Solution (Calculations):

𝑊̇,7( = 𝑚̇ ℎ% − ℎ% +
𝑉%$ − 𝑉$

2

𝑊̇"#$ = 74.45
𝑙𝑏𝑚
𝑠

[ 0.250
𝐵𝑡𝑢

𝑙𝑏𝑚 − 𝑅
1360 − 724𝑅 +

500 𝑓𝑡𝑠
%

2
−

100 𝑓𝑡𝑠
%

2

1 𝐵𝑡𝑢𝑙𝑏𝑚
25.037 𝑓𝑡

%

𝑠%

𝑊̇,7( = 12,194
𝐵𝑡𝑢
𝑠

1 ℎ𝑝

0.7068𝐵𝑡𝑢𝑠
= 17,250 ℎ𝑝
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Reversible Steady-Flow Work
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• Recall we had

• For steady flow:

𝑊F = /
%

$
𝑃 𝑑𝑉

𝛿𝑞!"# − 𝛿𝑤!"# = 𝑑ℎ + 𝑑𝑘𝑒 + 𝑑𝑝𝑒

@𝛿𝑞!"# = 𝑇𝑑
𝑇𝑑𝑠 = 𝑑ℎ − 𝑣𝑑𝑃

→ 𝛿𝑞!"# = 𝑑ℎ − 𝑣𝑑𝑃

−𝛿𝑤!"# = 𝑣𝑑𝑃 + 𝑑𝑘𝑒 + 𝑑𝑝𝑒

𝑤!"# = −/
%

$
𝑣𝑑𝑃 − Δ𝑘𝑒 − Δ𝑝𝑒



Reversible Steady-Flow Work
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• For steady flow:

𝑤!"# = −/
%

$
𝑣𝑑𝑃 − Δ𝑘𝑒 − Δ𝑝𝑒



Reversible Steady-Flow Work
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• We write the Bernoulli equation:

𝑤!"# = 0 = 𝑣 𝑃$ − 𝑃% +
𝑉$$ − 𝑉%$

2
+ 𝑔(𝑧$ − 𝑧%)



Reversible Steady-Flow Work
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• Steady-flow devices deliver the most and consume the least 
work when the process is reversible:


