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• Execution of the Carnot cycle in a closed system:

Reversible Adiabatic Compression (process 4-1, 
temperature rises from TL to TH)

Reversible Isothermal Expansion (process 1-2, 
TH = constant)

Reversible Adiabatic Expansion (process 2-3, 
temperature drops from TH to TL)

Reversible Isothermal Compression (process 3-
4, TL = constant)
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• The Reversed Carnot Cycle
q The Carnot heat-engine cycle is a totally reversible cycle

P-V diagram of the Carnot cycle
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• The higher the temperature of the thermal energy, the higher 
its quality
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• While the first law of thermodynamics deals with the 
property “energy” and “the conservation of it”, the second 
law leads to the definition of a new property called “entropy”

• Entropy is somewhat an abstract property, and it is difficult 
to give a physical description of it without considering the 
microscopic state of the system 

• Entropy is best understood and appreciated by studying its 
uses in commonly encountered engineering processes, and 
this is what we intend to do
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• The equality in the Clausius inequality holds for totally or 
just internally reversible cycles and the inequality for the 
irreversible ones

!
𝛿𝑄
𝑇
≤ 0
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• To demonstrate the validity of the Clausius inequality: 

𝑊! = 𝑇" ∮
#$
%

𝛿𝑊! = 𝛿𝑄" − 𝑑𝐸!

𝛿𝑊! = 𝛿𝑊&'( + 𝛿𝑊)*)

𝛿𝑄"
𝑇"

=
𝛿𝑄
𝑇

𝛿𝑊! = 𝑇"
𝛿𝑄
𝑇
− 𝑑𝐸!
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• To demonstrate the validity of the Clausius inequality: 

𝑊! = 𝑇" ∮
#$
%

It is impossible for any device that operates on 
a cycle to receive heat from a single reservoir 

and produce a net amount of work

!
𝛿𝑄
𝑇
≤ 0

Clausius inequality
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• The equality in the Clausius inequality holds for totally or jut 
internally reversible cycles and the inequality for the 
irreversible ones

!
𝛿𝑄
𝑇

+,-,&'(

= 0
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• Let’s try to find out more about entropy with looking at work 
in a cycle:

!𝑑𝑉 =?

!𝑑𝑉 = Δ𝑉!"!#$ = 0

𝐻𝑜𝑤 𝑎𝑏𝑜𝑢𝑡 𝛿𝑊?
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• Let’s try to find out more about entropy with looking into a 
cycle: 

𝑑𝑆 = !
𝛿𝑄
𝑇

(
𝑘𝐽
𝐾
)

Δ𝑆 = 𝑆% − 𝑆& = :
&

% 𝛿𝑄
𝑇 '(),+$,
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• Pay attention to reversible and irreversible integration:

!
𝛿𝑄
𝑇
= 𝑖𝑓 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑙𝑦 𝑟𝑒𝑣𝑒𝑟𝑠𝑖𝑏𝑙𝑒 = 𝑆
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• A special case: Internally reversible isothermal heat transfer 
processes:

Δ𝑆 = :
&

% 𝛿𝑄
𝑇 '(),+$,

= :
&

% 𝛿𝑄
𝑇- '(),+$,

=
1
𝑇-
:
&

%
𝛿𝑄'(),+$,

Δ𝑆'./)0$+12# =
𝑄
𝑇-

𝑘𝐽
𝐾

(A reservoir can absorb or supply heat indefinitely at a constant temperature)
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• A piston-cylinder device contains a liquid-vapor mixture of 
water at 300 K. During a constant pressure process, 750 kJ 
of heat is transferred to the water. As a result of the liquid in 
the cylinder vaporizes. Determine the entropy change of 
water during this process.
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• Solution:

Δ𝑆'./)0$+12# =
𝑄
𝑇-

𝑘𝐽
𝐾

Δ𝑆 =
750 𝑘𝐽
300 𝐾

= 2.5
𝑘𝐽
𝐾
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• For processes we can write: 

!
𝛿𝑄
𝑇
≤ 0

!
&

% 𝛿𝑄
𝑇
+ !

&

% 𝛿𝑄
𝑇

'(),+$,
≤ 0

!
&

% 𝛿𝑄
𝑇
≤ 𝑆% − 𝑆&

!
&

% 𝛿𝑄
𝑇
≤ 𝑑𝑆
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• For entropy, we can say

!
/

0 𝛿𝑄
𝑇
≤ Δ𝑆

Δ𝑆)*) = 𝑆0 − 𝑆/ = !
/

0 𝛿𝑄
𝑇
+ 𝑆1',
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• Increase of entropy principle:

Δ𝑆+)234-'5 ≥ 0
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• Entropy is an extensive property (not entropy per unit 
mass), so the total entropy of a system is equal to the sum 
of the entropies of the parts of the system (i.e., an isolated 
system may consist of any number of subsystem
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• For an isolated system:

𝑆1', = Δ𝑆-2-43 = Δ𝑆)*) + Δ𝑆)6&& ≥ 0
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• For an isolated system:
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• The increase of entropy principle can be summarized as:

𝑆1', = 1
> 0. 𝑖𝑟𝑟𝑒𝑣𝑒𝑟𝑠𝑖𝑏𝑙𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠
= 0 𝑟𝑒𝑣𝑒𝑟𝑠𝑖𝑏𝑙𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠
< 0. 𝑖𝑚𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠
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• Entropy is a property:

Δ𝑆 = 𝑚Δ𝑠 = 𝑚(𝑠% − 𝑠&)
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• For a closed system (m = constant), during a process we 
have:

Δ𝑆 = 𝑚Δ𝑠 = 𝑚(𝑠0 − 𝑠/)
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• We can draw T-s diagram now:



CLASS ACTIVITY

32



Class Activity

33

• A rigid tank contains 5-kg of refrigerant 134-a at 20 °C and 
140 kPa. The refrigerant is now cooled while being stirred 
until its pressure drops to 100 kPa. Determine the entropy 
change of the refrigerant during this process. 
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• Solutions (assumptions):
q Closed system (m = constant)
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• Solutions (Calculations):

𝑃& = 140 𝑘𝑃𝑎
𝑇& = 20 °𝐶 →

𝑠& = 1.0625
𝑘𝐽

𝑘𝑔 − 𝐾

𝑣& = 0.16544
𝑚3

𝑘𝑔

𝑃% = 100 𝑘𝑃𝑎
𝑣% = 𝑣&

→
𝑣4 = 0.0007258

𝑚3

𝑘𝑔

𝑣5 = 0.19255
𝑚3

𝑘𝑔

(𝑣4 < 𝑣%< 𝑣5)
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• Solutions (Calculations):

𝑥% =
𝑣% − 𝑣4
𝑣45

=
0.16544 − 0.0007258
0.19255 − 0.0007258

= 0.859

𝑠% = 𝑠4 + 𝑥%𝑠45 = 0.07182 + 0.859 0.88008 = 0.8278
𝑘𝐽

𝑘𝑔 − 𝐾

Δ𝑆 = 𝑚(𝑠% − 𝑠&) = (5 𝑘𝑔)(0.8278 − 1.0625
𝑘𝐽

𝑘𝑔 − 𝐾
) = −1.173 𝑘𝐽/𝐾



Class Activity

37

• Solutions (assumptions):
q Closed system (m = constant)

𝑃& = 140 𝑘𝑃𝑎
𝑇& = 20 °𝐶 →

𝑠& = 1.0625
𝑘𝐽

𝑘𝑔 − 𝐾

𝑣& = 0.16544
𝑚3

𝑘𝑔

𝑃% = 100 𝑘𝑃𝑎
𝑣% = 𝑣&

→
𝑣4 = 0.0007258

𝑚3

𝑘𝑔

𝑣5 = 0.19255
𝑚3

𝑘𝑔

(𝑣4 < 𝑣%< 𝑣5)
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• A piston-cylinder device initially contains 3 lbm of liquid 
water at 20 psia and 70 °F. The water is now heated at 
constant pressure by the addition of 3450 Btu of heat. 
Determine the entropy change of the water during this 
process.
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• Solutions (assumptions):
q The tank is stationary and thus the kinetic and potential 

energy changes are zero (Δ𝐾𝐸 = Δ𝑃𝐸 = 0)
q The process is quasi-equilibrium 
q The pressure remains constant during this process (𝑃! = 𝑃")
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• Solutions (processes):

𝑎𝑡 70°𝐹 → 𝑃.2) = 0.3632 𝑝𝑠𝑖𝑎
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• Solutions (Calculation):

𝑃& = 20 𝑝𝑠𝑖𝑎
𝑇& = 70 °𝐹 →

𝑠& ≅ 𝑠4 @ 7-°9 = 0.07459
𝐵𝑡𝑢

𝑙𝑏𝑚 − 𝑅

ℎ& ≅ ℎ4 @ 7-°9 = 38.08
𝐵𝑡𝑢
𝑙𝑏𝑚

𝑃& = 20 𝑝𝑠𝑖𝑎
𝐴𝑛𝑜𝑡ℎ𝑒𝑟 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 (? ? ? ? ) →



Class Activity

43

• Solutions (Calculation):

𝐸'( − 𝐸/:) = Δ𝐸.".)$1

𝑄'( −𝑊; = ΔU

𝑄'( = ΔH = m(h% − h&)

3450 𝐵𝑡𝑢 = 3 𝑙𝑏𝑚 (ℎ% − 38.08
𝐵𝑡𝑢
𝑙𝑏𝑚

)

ℎ% = 1188.1
𝐵𝑡𝑢
𝑙𝑏𝑚
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• Solutions (Calculation):

𝑃& = 20 𝑝𝑠𝑖𝑎

ℎ% = 1188.1
𝐵𝑡𝑢
𝑙𝑏𝑚

→ 𝑠% = 1.7761
𝐵𝑡𝑢

𝑙𝑏𝑚 − 𝑅
(𝐹𝑟𝑜𝑚 𝑇𝑎𝑏𝑙𝑒 𝐴 − 6𝐴 − 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛)

Δ𝑆 = 𝑚 𝑠% − 𝑠& = 3 𝑙𝑏𝑚 1.7761 − 0.07459
𝐵𝑡𝑢

𝑙𝑏𝑚 − 𝑅
= 5.105

𝐵𝑡𝑢
𝑅
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• The entropy of a fixed mass can be changed by:
q Heat Transfer 
q Irreversibilities

• Entropy of a fixed mass does not change during a process 
that is internally reversible and adiabatic. During this process 
entropy remains constant and we call it isentropic process

Δ𝑠 = 0 𝑜𝑟 𝑠% = 𝑠& (
𝑘𝐽

𝑘𝑔 − 𝐾)
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• A substance will have the same entropy value at the end of 
the process as it does the beginning if the process is carried 
out in an isentropic manner

• Many engineering systems or devices such as pumps, 
turbines, nozzles, and diffusers are essentially adiabatic in 
their operation, and they perform best when the 
irreversibilities are minimized (idealized conditions)
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• A reversible adiabatic process is necessarily isentropic (𝑠e =
𝑠f), but an isentropic process is not necessarily a reversible 
adiabatic process (the entropy increase of a substance 
during a process as a result of irreversibilities may be offset 
by a decrease in entropy as a result of heat losses, for 
example)

• The term isentropic process is customarily used in 
thermodynamics to imply an internally reversible, adiabatic 
process 
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• Steam enters an adiabatic turbine at 5 MPa and 450 °C and 
leaves at a pressure of 1.4 MPa. Determine the work output 
of the turbine per unit mass of steam if the process is 
reversible. 
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• Solutions (assumptions):
q This is a steady flow process (no change with respect to 

time), meaning Δ𝑚#$ = 0, Δ𝐸#$ = 0, Δ𝑆#$ = 0)
q The kinetic and potential energy changes are negligible 

Δ𝐾𝐸 = Δ𝑃𝐸 = 0
q The process is adiabatic and thus there is no heat transfer
q The process is reversible
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• Solutions (processes):
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• Solutions (calculations):

�̇� = �̇�/ = �̇�0

�̇�+, − �̇�26- =
𝑑𝐸)*)-'7

𝑑𝑡
= 0

�̇�+, = �̇�26-

�̇�ℎ/ = �̇�26- + �̇�ℎ0 (𝑠𝑖𝑛𝑐𝑒 �̇� = 0 , 𝑘𝑒 ≅ 0, 𝑝𝑒 ≅ 0)

�̇�26- = �̇�(ℎ/ − ℎ0)
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• Solutions (calculations):

𝑃/ = 5 𝑀𝑃𝑎
𝑇/ = 450 °𝐶 →

ℎ/ = 3317.2
𝑘𝐽
𝑘𝑔

𝑠/ = 6.8210
𝑘𝐽

𝑘𝑔 − 𝐾

1𝑃0 = 1.4 𝑀𝑃𝑎
𝑠0 = 𝑠/

→ ℎ0 = 2967.4
𝑘𝐽
𝑘𝑔

�̇�26- = ℎ/ − ℎ0 = 3317.2 − 2967.4 = 349.8
𝑘𝐽
𝑘𝑔
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• Property diagrams serve as great visual aids in the 
thermodynamic analysis of processes

• Based on the 2nd law, we can plot new diagrams that involve 
entropy:
q Temperature-entropy
q Enthalpy-entropy
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• We can rearrange our entropy equation:

𝛿𝑄+,-,&'( = 𝑇 𝑑𝑆 𝑄+,-,&'( = [
/

0
𝑇 𝑑𝑆 (𝑘𝐽)

(The area under the process curve on a T-S diagram represents heat transfer 
during an internally reversible process)
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• We can use the per-unit mass equation:

𝛿𝑞+,-,&'( = 𝑇 𝑑𝑠 𝑞+,-,&'( = [
/

0
𝑇 𝑑𝑠 (𝑘𝐽)

(The area under the process curve on a T-S diagram represents heat transfer 
during an internally reversible process)
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• One special case (internally reversible isothermal process): 

𝑄+,-,&'( = 𝑇8Δ𝑆

𝑞+,-,&'( = 𝑇8Δ𝑠
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• T-s diagram for an isentropic process: 
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• h-s diagram (could be helpful for steady flow of devices such 
as nozzles, compressors, turbines):
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• T-s diagram of water is given in the appendix:

Figure A-9



Property Diagrams Involving Entropy

63

• h-s diagram of steam is given in the appendix:

Figure A-10
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• Show the Carnot cycle on a T-S diagram and indicate the
areas that represent the heat supplied and rejected and the 
network in the diagram.
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• Solution:


