CAE 208 Thermal-Fluids Engineering I MMAE 320: Thermodynamics Fall 2022

November 17, 2022 Entropy (ii)

Built Environment Research @ IIT] 🐋 🎧 🍂 🥂

Advancing energy, environmental, and sustainability research within the built environment www.built-envi.com Dr. Mohammad Heidarinejad, Ph.D., P.E.

Civil, Architectural and Environmental Engineering Illinois Institute of Technology

muh182@iit.edu

ANNOUNCEMENTS

Announcements

Energy Engineering and Commissioning in Buildings

SPEAKER

Energy Engineer, LEED AP
Aaron Kachler

WHEN

November 17th, 2022 12:40 pm – 1:40 pm

WHERE

John T. Rettaliata Engineering Center, RE 242

TALK ABOUT

- ✔ Work Experiences
- Energy Modeling
- Careers in Energy Engineering and Commissioning
- ✓ Tips for P.E. exam

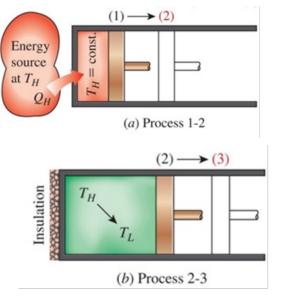
For more information, feel free to contact ASHRAE official email ashrae_iit@iit.edu

Interested in Joining

RECAP

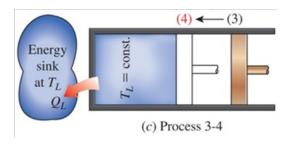
Recap

• Execution of the Carnot cycle in a closed system:

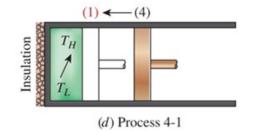


Reversible Isothermal Expansion (process 1-2, T_H = constant)

Reversible Adiabatic Expansion (process 2-3, temperature drops from T_H to T_L)

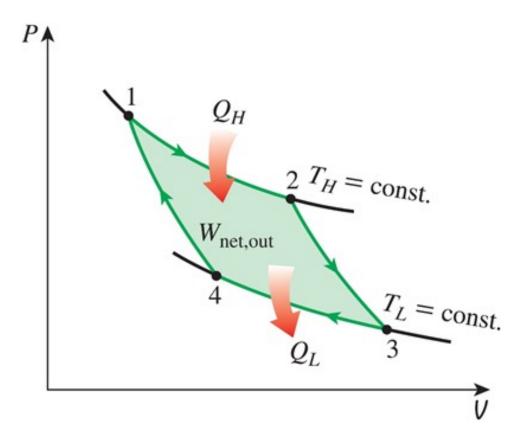


Reversible Isothermal Compression (process 3-4, T_L = constant)



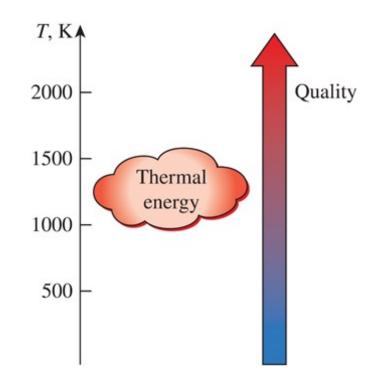
Reversible Adiabatic Compression (process 4-1, temperature rises from T_L to T_H)

The Reversed Carnot Cycle
 The Carnot heat-engine cycle is a totally reversible cycle



P-V diagram of the Carnot cycle

 The higher the temperature of the thermal energy, the higher its quality



- While the first law of thermodynamics deals with the property "energy" and "the conservation of it", the second law leads to the definition of a new property called "entropy"
- Entropy is somewhat an abstract property, and it is difficult to give a physical description of it without considering the microscopic state of the system
- Entropy is best understood and appreciated by studying its uses in commonly encountered engineering processes, and this is what we intend to do

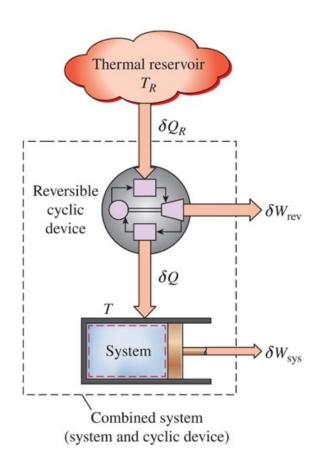
Recap

 The equality in the Clausius inequality holds for totally or just internally reversible cycles and the inequality for the irreversible ones

$$\oint \frac{\delta Q}{T} \le 0$$

ENTROPY

• To demonstrate the validity of the Clausius inequality:



$$\delta W_C = \delta Q_R - dE_C$$

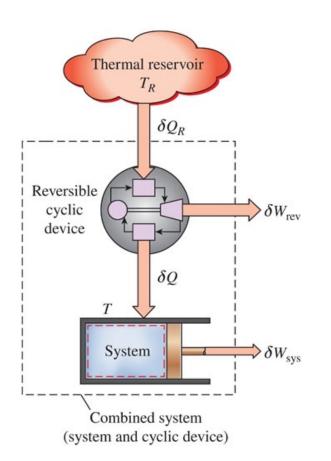
$$\delta W_C = \delta W_{rev} + \delta W_{sys}$$

$$\frac{\delta Q_R}{T_R} = \frac{\delta Q}{T}$$

$$\delta W_C = T_R \frac{\delta Q}{T} - dE_C$$

$$W_C = T_R \oint \frac{\delta Q}{T}$$

• To demonstrate the validity of the Clausius inequality:



$$W_C = T_R \oint \frac{\delta Q}{T}$$

It is impossible for any device that operates on a cycle to receive heat from a single reservoir and produce a net amount of work

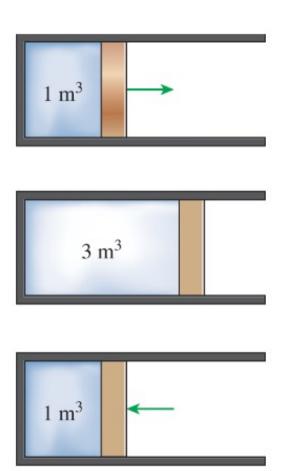
 $\oint \frac{\delta Q}{T} \le 0$

Clausius inequality

 The equality in the Clausius inequality holds for totally or jut internally reversible cycles and the inequality for the irreversible ones

$$\left(\oint \frac{\delta Q}{T}\right)_{int,rev} = 0$$

 Let's try to find out more about entropy with looking at work in a cycle:



$$\oint dV = ?$$

$$\oint dV = \Delta V_{cycle} = 0$$

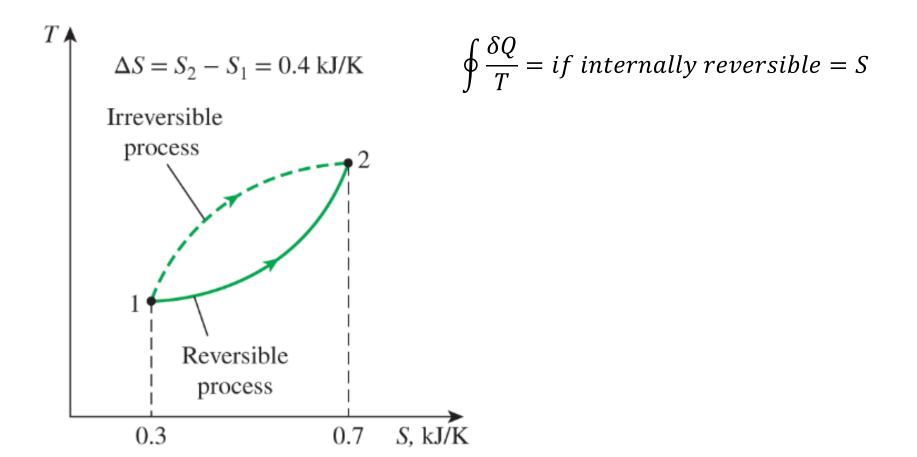
How about δW ?

Let's try to find out more about entropy with looking into a cycle:

$$dS = \oint \frac{\delta Q}{T} \qquad (\frac{kJ}{K})$$

$$\Delta S = S_2 - S_1 = \int_1^2 \left(\frac{\delta Q}{T}\right)_{int,rev}$$

• Pay attention to reversible and irreversible integration:



A special case: Internally reversible isothermal heat transfer processes:

$$\Delta S = \int_{1}^{2} \left(\frac{\delta Q}{T}\right)_{int,rev} = \int_{1}^{2} \left(\frac{\delta Q}{T_{0}}\right)_{int,rev} = \frac{1}{T_{0}} \int_{1}^{2} \delta Q_{int,rev}$$

$$\Delta S_{isothermal} = \frac{Q}{T_0} \qquad \left(\frac{kJ}{K}\right)$$

(A reservoir can absorb or supply heat indefinitely at a constant temperature)

Class Activity

 A piston-cylinder device contains a liquid-vapor mixture of water at 300 K. During a constant pressure process, 750 kJ of heat is transferred to the water. As a result of the liquid in the cylinder vaporizes. Determine the entropy change of water during this process.

Class Activity

• Solution:

T = 300 K = const.
$\Delta S_{\rm sys} = \frac{Q}{T} = 2.5 \ \frac{\rm kJ}{\rm K}$
Q = 750 kJ

$$\Delta S_{isothermal} = \frac{Q}{T_0} \qquad \left(\frac{kJ}{K}\right)$$

$$\Delta S = \frac{750 \ kJ}{300 \ K} = 2.5 \frac{kJ}{K}$$

THE INCREASE OF ENTROPY PRINCIPLE

• For processes we can write:

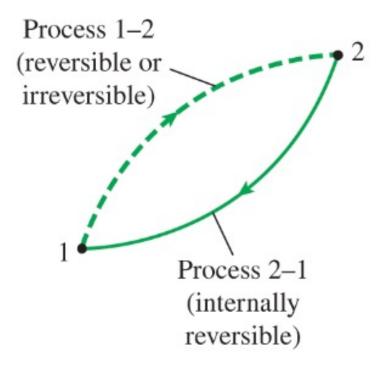
$$\oint \frac{\delta Q}{T} \leq 0$$

$$\oint_{1}^{2} \frac{\delta Q}{T} + \left(\oint_{1}^{2} \frac{\delta Q}{T} \right)_{int,rev} \leq 0$$

$$\oint_{1}^{2} \frac{\delta Q}{T} \le S_{2} - S_{1}$$

08.0

$$\oint_{1}^{2} \frac{\delta Q}{T} \le dS$$



• For entropy, we can say

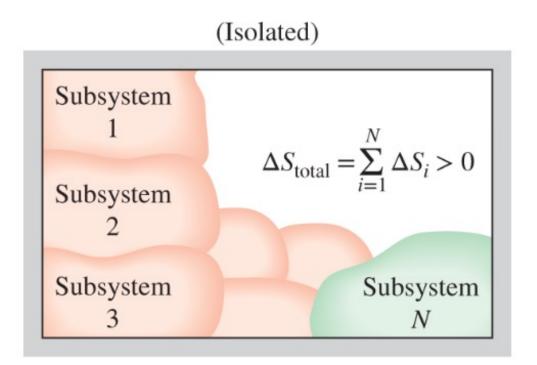
$$\oint_{1}^{2} \frac{\delta Q}{T} \leq \Delta S$$

$$\Delta S_{sys} = S_2 - S_1 = \oint_1^2 \frac{\delta Q}{T} + S_{gen}$$

• Increase of entropy principle:

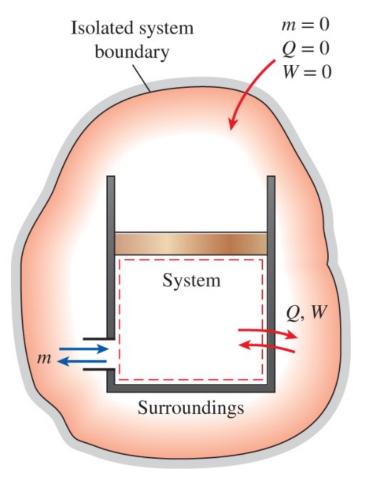
 $\Delta S_{isolated} \geq 0$

 Entropy is an extensive property (not entropy per unit mass), so the total entropy of a system is equal to the sum of the entropies of the parts of the system (i.e., an isolated system may consist of any number of subsystem

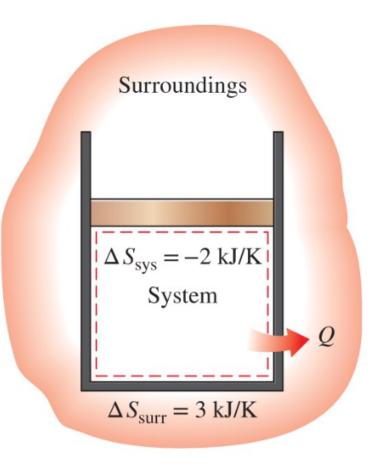


• For an isolated system:

$$S_{gen} = \Delta S_{total} = \Delta S_{sys} + \Delta S_{surr} \ge 0$$



• For an isolated system:



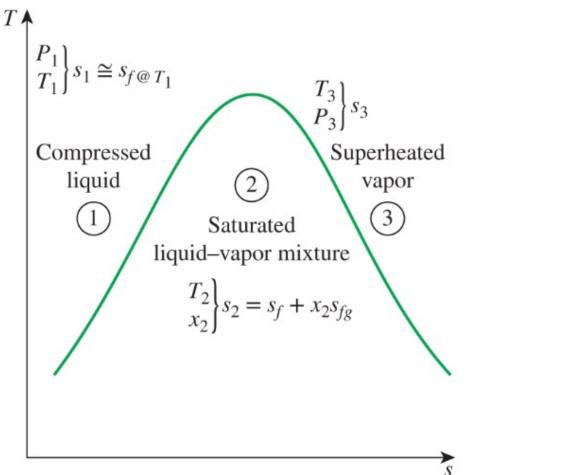
• The increase of entropy principle can be summarized as:

$$S_{gen} = \begin{cases} > 0. & irreversible process \\ = 0 & reversible process \\ < 0. & impossible process \end{cases}$$

ENTROPY CHANGE OF PURE SUBSTANCES

Entropy Change of Pure Substances

• Entropy is a property:



$$\Delta S = m\Delta s = m(s_2 - s_1)$$

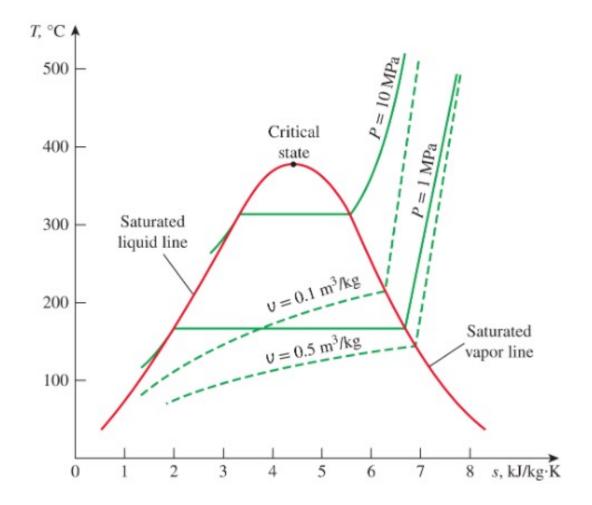
Entropy Change of Pure Substances

 For a closed system (m = constant), during a process we have:

$$\Delta S = m\Delta s = m(s_2 - s_1)$$

Entropy Change of Pure Substances

• We can draw T-s diagram now:



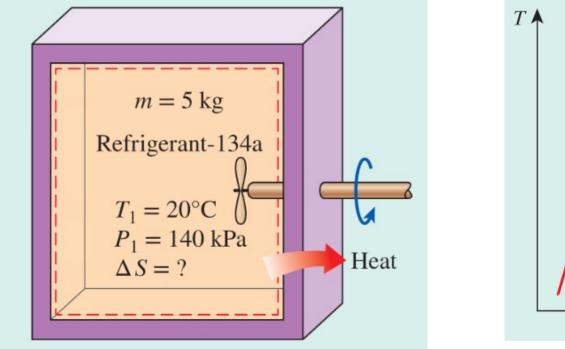
CLASS ACTIVITY

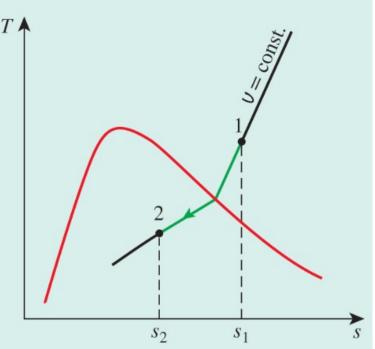
Class Activity

 A rigid tank contains 5-kg of refrigerant 134-a at 20 °C and 140 kPa. The refrigerant is now cooled while being stirred until its pressure drops to 100 kPa. Determine the entropy change of the refrigerant during this process.

Class Activity

Solutions (assumptions):
 Closed system (m = constant)





• Solutions (Calculations):

$$\begin{cases} P_1 = 140 \ kPa \\ T_1 = 20 \ ^{\circ}C \end{cases} \xrightarrow{k_1 = 1.0625 \ \frac{kJ}{kg - K} \\ v_1 = 0.16544 \ \frac{m^3}{kg} \end{cases}$$

$$\begin{cases} P_2 = 100 \ kPa \\ v_2 = v_1 \end{cases} \xrightarrow{\qquad \rightarrow \qquad} v_f = 0.0007258 \frac{m^3}{kg} \\ v_g = 0.19255 \ \frac{m^3}{kg} \end{cases}$$

$$(v_f < v_2 < v_g)$$

Class Activity

• Solutions (Calculations):

$$x_2 = \frac{v_2 - v_f}{v_{fg}} = \frac{0.16544 - 0.0007258}{0.19255 - 0.0007258} = 0.859$$

$$s_2 = s_f + x_2 s_{fg} = (0.07182) + (0.859)(0.88008) = 0.8278 \frac{kJ}{kg - K}$$

$$\Delta S = m(s_2 - s_1) = (5 \, kg)(0.8278 - 1.0625 \, \frac{kJ}{kg - K}) = -1.173 \, kJ/K$$

Solutions (assumptions):
 Closed system (m = constant)

$$\begin{cases} P_1 = 140 \ kPa \\ T_1 = 20 \ ^{\circ}C \end{cases} \xrightarrow{k_1 = 1.0625 \ \frac{kJ}{kg - K} \\ v_1 = 0.16544 \ \frac{m^3}{kg} \end{cases}$$

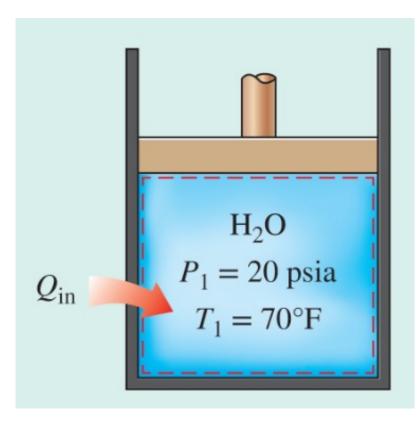
$$\begin{cases} P_2 = 100 \ kPa \\ v_2 = v_1 \end{cases} \xrightarrow{\qquad \rightarrow \qquad} v_f = 0.0007258 \frac{m^3}{kg} \\ v_g = 0.19255 \ \frac{m^3}{kg} \end{cases}$$

$$(v_f < v_2 < v_g)$$

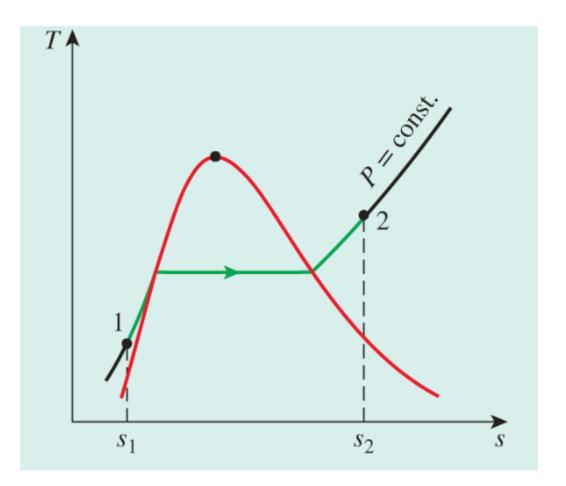
CLASS ACTIVITY

 A piston-cylinder device initially contains 3 lbm of liquid water at 20 psia and 70 °F. The water is now heated at constant pressure by the addition of 3450 Btu of heat. Determine the entropy change of the water during this process.

- Solutions (assumptions):
 - □ The tank is stationary and thus the kinetic and potential energy changes are zero ($\Delta KE = \Delta PE = 0$)
 - □ The process is quasi-equilibrium
 - □ The pressure remains constant during this process $(P_1 = P_2)$



• Solutions (processes):



at 70° $F \rightarrow P_{sat} = 0.3632 \ psia$

• Solutions (Calculation):

$$\begin{array}{ll} P_1 = 20 \ psia \\ T_1 = 70 \ ^\circ F \end{array} \rightarrow \begin{array}{l} s_1 \cong s_{f \ @ \ 70^\circ F} = 0.07459 \ \displaystyle \frac{Btu}{lbm-R} \\ h_1 \cong h_{f \ @ \ 70^\circ F} = 38.08 \ \displaystyle \frac{Btu}{lbm} \end{array}$$

 $P_1 = 20 \ psia$ Another property (????) \rightarrow

• Solutions (Calculation):

$$E_{in} - E_{out} = \Delta E_{system}$$

$$Q_{in} - W_b = \Delta U$$

$$Q_{in} = \Delta \mathbf{H} = \mathbf{m}(\mathbf{h}_2 - \mathbf{h}_1)$$

$$3450 Btu = (3 \ lbm)(h_2 - 38.08 \frac{Btu}{lbm})$$

$$h_2 = 1188.1 \frac{Btu}{lbm}$$

• Solutions (Calculation):

$$\begin{array}{ll} P_1 = 20 \ psia & s_2 = 1.7761 \ \frac{Btu}{lbm - R} \\ h_2 = 1188.1 \ \frac{Btu}{lbm} & \rightarrow & (From \ Table \ A - 6A \ - \ interpolation) \end{array}$$

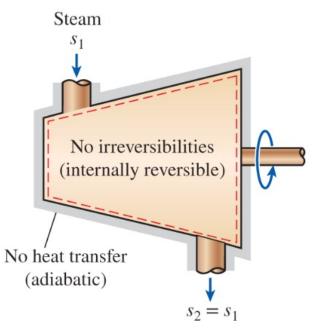
$$\Delta S = m(s_2 - s_1) = (3 \ lbm) \left(1.7761 - 0.07459 \frac{Btu}{lbm - R} \right) = 5.105 \frac{Btu}{R}$$

ISENTROPIC PROCESSES

Isentropic Processes

- The entropy of a fixed mass can be changed by:
 Heat Transfer
 Irreversibilities
- Entropy of a fixed mass does not change during a process that is internally reversible and adiabatic. During this process entropy remains constant and we call it *isentropic* process

$$\Delta s = 0 \quad or \quad s_2 = s_1 \quad \left(\frac{kJ}{kg - K}\right)$$



Isentropic Processes

- A substance will have the same entropy value at the end of the process as it does the beginning if the process is carried out in an isentropic manner
- Many engineering systems or devices such as pumps, turbines, nozzles, and diffusers are essentially adiabatic in their operation, and they perform best when the irreversibilities are minimized (idealized conditions)

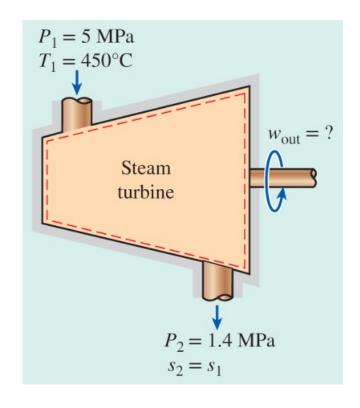
Isentropic Processes

- A reversible adiabatic process is necessarily isentropic ($s_1 = s_2$), but an isentropic process is not necessarily a reversible adiabatic process (the entropy increase of a substance during a process as a result of irreversibilities may be offset by a decrease in entropy as a result of heat losses, for example)
- The term isentropic process is customarily used in thermodynamics to imply an internally reversible, adiabatic process

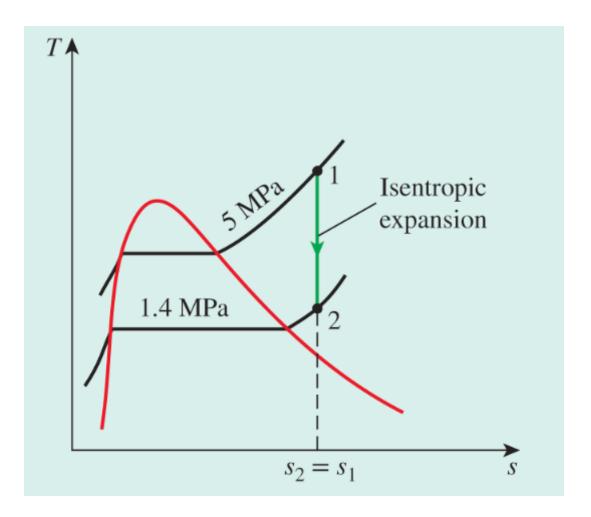
CLASS ACTIVITY

 Steam enters an adiabatic turbine at 5 MPa and 450 °C and leaves at a pressure of 1.4 MPa. Determine the work output of the turbine per unit mass of steam if the process is reversible.

- Solutions (assumptions):
 - □ This is a steady flow process (no change with respect to time), meaning $\Delta m_{CV} = 0$, $\Delta E_{CV} = 0$, $\Delta S_{CV} = 0$)
 - □ The kinetic and potential energy changes are negligible $(\Delta KE = \Delta PE = 0)$
 - □ The process is adiabatic and thus there is no heat transfer
 - □ The process is reversible



• Solutions (processes):



• Solutions (calculations):

$$\dot{m} = \dot{m}_1 = \dot{m}_2$$

$$\dot{E}_{in} - \dot{E}_{out} = \frac{dE_{system}}{dt} = 0$$

$$\dot{E}_{in} = \dot{E}_{out}$$

$$\dot{m}h_1 = \dot{W}_{out} + \dot{m}h_2$$
 (since $\dot{Q} = 0$, $ke \cong 0$, $pe \cong 0$)

$$\dot{W}_{out} = \dot{m}(h_1 - h_2)$$

• Solutions (calculations):

$$\begin{cases} P_1 = 5 MPa \\ T_1 = 450 \ ^\circ C \end{cases} \xrightarrow{h_1} = 3317.2 \ \frac{kJ}{kg} \\ s_1 = 6.8210 \ \frac{kJ}{kg - K} \end{cases}$$

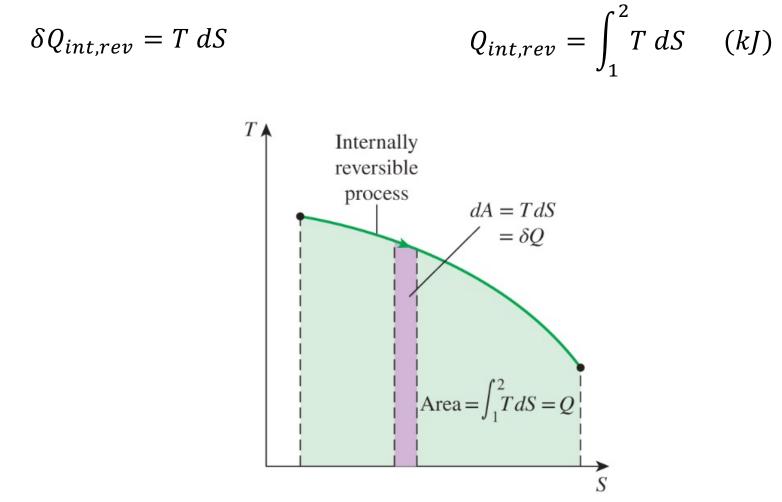
$$\begin{cases} P_2 = 1.4 MPa \\ s_2 = s_1 \end{cases} \rightarrow h_2 = 2967.4 \frac{kJ}{kg} \end{cases}$$

$$\dot{W}_{out} = h_1 - h_2 = 3317.2 - 2967.4 = 349.8 \frac{kJ}{kg}$$

PROPERTY DIAGRAMS INVOLVING ENTROPY

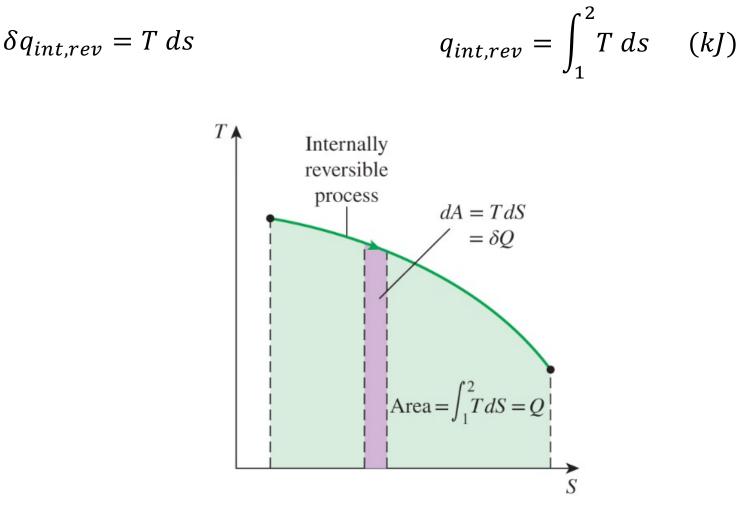
- Property diagrams serve as great visual aids in the thermodynamic analysis of processes
- Based on the 2nd law, we can plot new diagrams that involve entropy:
 - □ Temperature-entropy
 - Enthalpy-entropy

• We can rearrange our entropy equation:



(The area under the process curve on a T-S diagram represents heat transfer during an internally reversible process)

• We can use the per-unit mass equation:



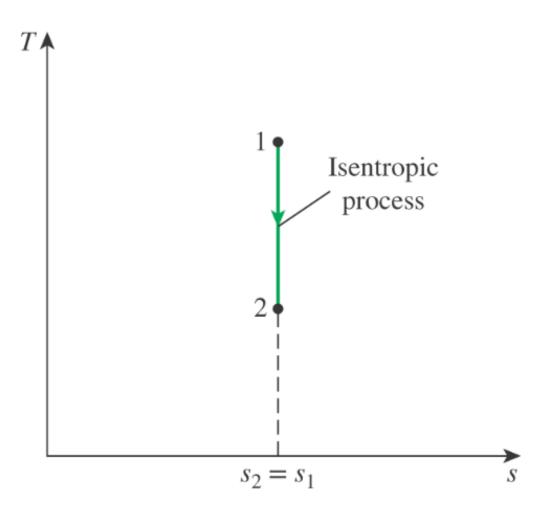
(The area under the process curve on a T-S diagram represents heat transfer during an internally reversible process)

• One special case (internally reversible isothermal process):

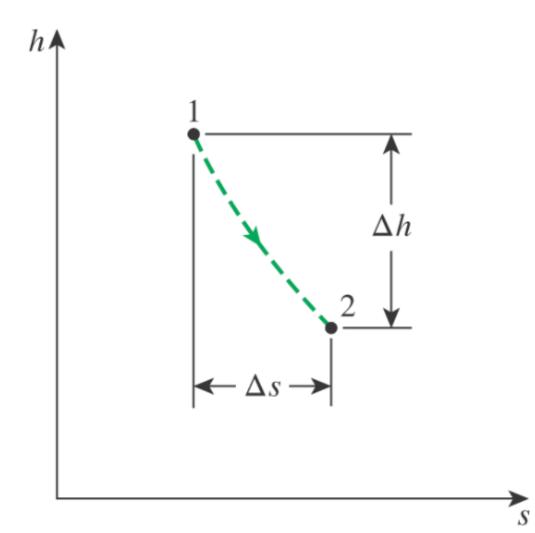
 $Q_{int,rev} = T_0 \Delta S$

 $q_{int,rev} = T_0 \Delta s$

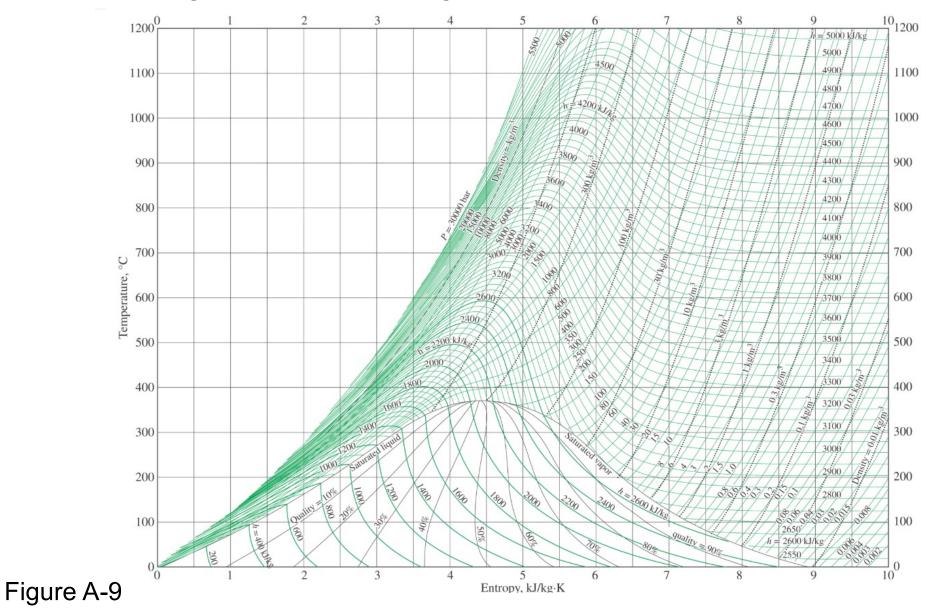
• T-s diagram for an isentropic process:



 h-s diagram (could be helpful for steady flow of devices such as nozzles, compressors, turbines):



• T-s diagram of water is given in the appendix:



• h-s diagram of steam is given in the appendix:

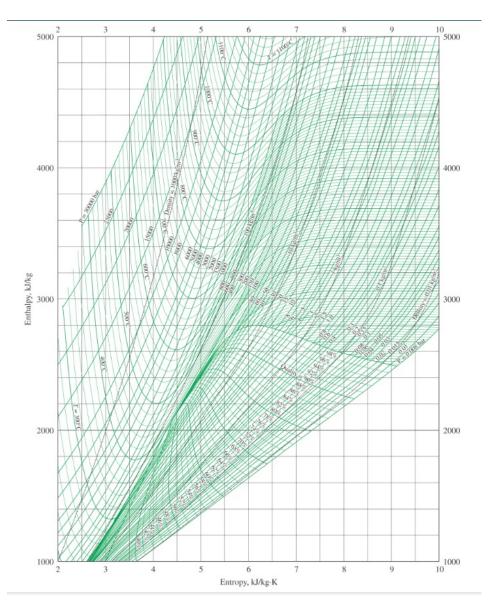


Figure A-10

CLASS ACTIVITY

 Show the Carnot cycle on a T-S diagram and indicate the areas that represent the heat supplied and rejected and the network in the diagram. • Solution:

