CAE 208 Thermal-Fluids Engineering I MMAE 320: Thermodynamics

Fall 2022

October 27, 2022
 Mass and Energy Analysis of Control Volumes (III)

```
Built
Environment
Research
@ IIT
```



```
Advancing energy, environmental, and

RECAP

\section*{Recap}
- To push the entire fluid element into the control volume, this force must act through a distance \(L\)
\[
\begin{aligned}
& F=P A \\
& W_{\text {flow }}=F L=P A L=P \forall
\end{aligned}
\]
\[
w_{\text {flow }}=P v
\]

(a) Before entering

(b) After entering

\section*{Recap}
- Total energy of a flowing fluid is:


\section*{Recap}
- Steady-flow process:
\(\square\) No intensive or extensive properties within the control volume change with time
Boundary work is zero
- \(\Delta E_{C V}=0\)
\(\square m_{C V}=0\)


\section*{Recap}
- Consider an electric hot water heater under steady condition
\[
\begin{aligned}
& \dot{Q}-\dot{W}=\sum_{o u t} \dot{m}\left(h+\frac{V^{2}}{2}+g z\right)-\sum_{\text {in }} \dot{m}\left(h+\frac{V^{2}}{2}+g z\right) \\
& \dot{Q}-\dot{W}=\dot{m}\left(h_{2}-h_{1}+\frac{V_{2}^{2}-V_{1}^{2}}{2}+g\left(z_{2}-z_{1}\right)\right) \\
& q-w=h_{2}-h_{1}+\frac{V_{2}^{2}-V_{1}^{2}}{2}+g\left(z_{2}-z_{1}\right) \\
& q-w=h_{2}-h_{1}
\end{aligned}
\]

\section*{Recap}
- Let's look at \(\dot{Q}\)
\[
\dot{Q}-\dot{W}=\sum_{\text {out }} \dot{m}\left(h+\frac{V^{2}}{2}+g z\right)-\sum_{\text {in }} \dot{m}\left(h+\frac{V^{2}}{2}+g z\right)
\]

\section*{Recap}
- Let's look at \(\dot{W}\) :
\[
\dot{Q}-\dot{W}=\sum_{\text {out }} \dot{m}\left(h+\frac{V^{2}}{2}+g z\right)-\sum_{\text {in }} \dot{m}\left(h+\frac{V^{2}}{2}+g z\right)
\]


\section*{Recap}
- Let's look at \(\Delta h=h_{2}-h_{1}=c_{p, a v g}\left(T_{2}-T_{1}\right)\)
\[
\dot{Q}-\dot{W}=\sum_{\text {out }} \dot{m}\left(h+\frac{V^{2}}{2}+g z\right)-\sum_{\text {in }} \dot{m}\left(h+\frac{V^{2}}{2}+g z\right)
\]

\section*{Recap}
- Let's look at \(\Delta k e\)
\(\dot{Q}-\dot{W}=\sum_{\text {out }} \dot{m}\left(h+\frac{V^{2}}{2}+g z\right)-\sum_{\text {in }} \dot{m}\left(h+\frac{V^{2}}{2}+g z\right)\)


\section*{Recap}
- Let's look at \(\Delta p e\) (when do you think it becomes important?)
\[
\dot{Q}-\dot{W}=\sum_{\text {out }} \dot{m}\left(h+\frac{V^{2}}{2}+g z\right)-\sum_{\text {in }} \dot{m}\left(h+\frac{V^{2}}{2}+g z\right)
\]

\section*{SOME STEADY-FLOW ENGINEERING DEVICES}

\section*{Some Steady-Flow Energy Devices}
- Nozzles and Diffusers


\section*{Some Steady-Flow Energy Devices}
- Nozzles and Diffusers


\section*{Some Steady-Flow Energy Devices}
- Nozzles and Diffusers

\[
\begin{aligned}
& \dot{Q} \cong 0 \\
& \dot{W}=0(\text { most times }) \\
& \Delta p e \cong 0 \\
& \Delta k e \neq 0
\end{aligned}
\]

\section*{CLASS ACTIVITY}

\section*{Class Activity}
- Air at \(10^{\circ} \mathrm{C}\) and 80 kPa enters the diffuser of a jet engine steadily with a velocity of \(200 \mathrm{~m} / \mathrm{s}\). The inlet area of the diffuser is \(0.4 \mathrm{~m}^{2}\). The air leaves the diffuser with a velocity that is very small compared with the inlet velocity. Determine:
a) The mass flow rate of the air
b) The temperature of the air leaving the diffuser

\section*{Class Activity}
- Solution (assumptions):
1. This is a steady-flow process \(\left(\Delta m_{C V}=0\right.\) and \(\left.\Delta E_{C V}=0\right)\)
2. Air is an ideal gas since it is at a high temperature and low pressure relative to its critical-point values
3. The potential energy balance change is zero
4. \(\Delta p e=0\)
5. Heat transfer is negligible
6. Kinetic energy at the diffuser exit is negligible
7. There are no work interactions

\section*{Class Activity}
- Solution (a):
\[
\begin{aligned}
& \dot{m}_{1}=\dot{m}_{2}=\dot{m} \\
& v_{1}=\frac{R T_{1}}{P_{1}}=\frac{\left(0.287 \mathrm{kPa}-\frac{\mathrm{m}^{3}}{\mathrm{~kg}-\mathrm{K}}\right)(283 \mathrm{~K})}{80 \mathrm{kPa}}=1.015 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}
\end{aligned}
\]

\section*{Class Activity}
- Solution (b):
\[
\begin{aligned}
& \dot{E}_{\text {in }}=\dot{E}_{\text {out }}=\frac{d E_{\text {system }}}{d t}=0 \\
& \dot{E}_{\text {in }}=\dot{E}_{\text {out }}
\end{aligned}
\]
\[
\dot{m}\left(h_{1}+\frac{V_{1}^{2}}{2}\right)=\dot{m}\left(h_{2}+V_{2}^{2}\right)
\]
\[
h_{2}=h_{1}-\frac{V_{2}^{2}-V_{1}^{2}}{2}
\]
\[
\left(V_{2}^{2} \ll V_{1}^{2}\right)
\]

\section*{Class Activity}
- Solution (b):
\[
\text { Using Table } A-21 \rightarrow h_{1}=h_{@ 283 K}=283.14 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
\]

\section*{TABLE A-21}

Ideal-gas properties of air
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& T \\
& \mathrm{~K}
\end{aligned}
\] & \begin{tabular}{l}
\(h\) \\
\(\mathrm{kJ} / \mathrm{kg}\)
\end{tabular} & \(P_{r}\) & \[
\mathrm{kJ} / \mathrm{kg}
\] & \(v_{r}\) & \[
\begin{aligned}
& s^{\circ} \\
& \mathrm{kJ} / \mathrm{kg} \cdot \mathrm{~K}
\end{aligned}
\] \\
\hline 200 & 199.97 & 0.3363 & 142.56 & 1707.0 & 1.29559 \\
\hline 210 & 209.97 & 0.3987 & 149.69 & 1512.0 & 1.34444 \\
\hline 220 & 219.97 & 0.4690 & 156.82 & 1346.0 & 1.39105 \\
\hline 230 & 230.02 & 0.5477 & 164.00 & 1205.0 & 1.43557 \\
\hline 240 & 240.02 & 0.6355 & 171.13 & 1084.0 & 1.47824 \\
\hline 250 & 250.05 & 0.7329 & 178.28 & 979.0 & 1.51917 \\
\hline 260 & 260.09 & 0.8405 & 185.45 & 887.8 & 1.55848 \\
\hline 270 & 270.11 & 0.9590 & 192.60 & 808.0 & 1.59634 \\
\hline 280 & 280.13 & 1.0889 & 199.75 & 738.0 & 1.63279 \\
\hline 285 & 285.14 & 1.1584 & 203.33 & 706.1 & 1.65055 \\
\hline
\end{tabular}

\section*{Class Activity}
- Solution (b):

Using Table A-21 \(\rightarrow h_{1}=h_{@ 283 K}=283.14 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\)
\(h_{2}=283.14 \frac{\mathrm{~kJ}}{\mathrm{~kg}}-\frac{0-\left(200 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{2}\left(\frac{1 \frac{\mathrm{~kJ}}{\mathrm{~kg}}}{1000 \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}}\right)=303.14 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\)

From Table \(A-21 \rightarrow T_{2}=303 K\)

\section*{Class Activity}
- Solution (b):
\[
h_{2}=283.14 \frac{\mathrm{~kJ}}{\mathrm{~kg}}-\frac{0-\left(200 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{2}\left(\frac{1 \frac{\mathrm{~kJ}}{\mathrm{~kg}}}{1000 \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}}\right)=303.14 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
\]
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{TABLE A-21} \\
\hline \multicolumn{6}{|l|}{Ideal-gas properties of air} \\
\hline \[
\begin{aligned}
& T \\
& \mathrm{~K}
\end{aligned}
\] & \begin{tabular}{l}
\(h\) \\
kJ/kg
\end{tabular} & \(P_{r}\) & \[
\begin{aligned}
& u \\
& \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
\] & \(v_{r}\) & \[
\begin{aligned}
& s^{\circ} \\
& \mathrm{kJ} / \mathrm{kg} \cdot \mathrm{~K}
\end{aligned}
\] \\
\hline 298 & 298.18 & 1.3543 & 212.64 & 631.9 & 1.69528 \\
\hline 300 & 300.19 & 1.3860 & 214.07 & 621.2 & 1.70203 \\
\hline 305 & 305.22 & 1.4686 & 217.67 & 596.0 & 1.71865 \\
\hline
\end{tabular}

From Table \(A-21 \rightarrow T_{2}=303 \mathrm{~K}\)

\section*{Some Steady-Flow Energy Devices}
- Turbines, Compressors, fans, and Pumps
\(\square\) Turbine produce power output whereas compressors, pumps, and fans require power input
- Heat Transfer is usually negligible ( \(\dot{Q} \cong 0\) )
\(\square\) Potential energy is negligible ( \(p e \cong 0\) )
\(\square\) Kinetic energy is negligible ( \(k e \cong 0\) ) - except for fans and turbines but the change in enthalpy is significant compared to the velocity change


\section*{CLASS ACTIVITY}

\section*{Class Activity}
- Air at 100 kPa and 280 K is compressed steadily to 600 kPa and 400 K . The mass flow rate of the air is \(0.02 \mathrm{~kg} / \mathrm{s}\), and a heat loss of \(16 \mathrm{~kJ} / \mathrm{kg}\) occurs during the process. Assuming the changes in kinetic and potential energies are negligible, determine the necessary power input to the compressor.

\section*{Class Activity}
- Solution (assumptions):
1. Steady-flow \(\left(\Delta m_{C V}=0\right.\) and \(\left.\Delta \mathrm{E}_{\mathrm{CV}}=0\right)\)
2. Air is an ideal gas since it is at a high temperature and low pressure relative to its critical-point value
3. The kinetic and potential energy changes are zero ( \(\Delta \mathrm{ke}=\) \(\Delta p e=0)\)
\[
\dot{m}_{1}=\dot{m}_{2}=\dot{m}
\]


\section*{Class Activity}
- Solution:
\[
\dot{E}_{\text {in }}-\dot{E}_{\text {out }}=\frac{d E_{\text {system }}}{d t}=0 \rightarrow \dot{E}_{\text {in }}=\dot{E}_{\text {out }}
\]
\[
\dot{W}_{\text {in }}+\dot{m} h_{1}=\dot{Q}_{\text {out }}+\dot{m} h_{2}
\]
\[
\dot{W}_{\text {in }}=\dot{Q}_{\text {out }}+\dot{m}\left(h_{2}-h_{1}\right)
\]

\section*{Class Activity}
- Solution (From Table A-21):
\[
\begin{aligned}
& h_{1}=h_{@ 280 K}=280.13 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
& h_{2}=h_{@ 400 K}=400.98 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{TABLE A-21} \\
\hline \multicolumn{6}{|l|}{Ideal-gas properties of air} \\
\hline \[
\begin{aligned}
& T \\
& \mathrm{~K}
\end{aligned}
\] & \begin{tabular}{l}
\[
h
\] \\
\(\mathrm{kJ} / \mathrm{kg}\)
\end{tabular} & \(P_{r}\) & \[
\begin{aligned}
& u \\
& \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
\] & \(u_{r}\) & \[
\begin{aligned}
& s^{\circ} \\
& \mathrm{kJ} / \mathrm{kg} \cdot \mathrm{~K}
\end{aligned}
\] \\
\hline 270 & 270.11 & 0.9590 & 192.60 & 808.0 & 1.59634 \\
\hline 280 & 280.13 & 1.0889 & 199.75 & 738.0 & 1.63279 \\
\hline 285 & 285.14 & 1.1584 & 203.33 & 706.1 & 1.65055 \\
\hline 290 & 290.16 & 1.2311 & 206.91 & 676.1 & 1.66802 \\
\hline 390 & 390.88 & 3.481 & 278.93 & 321.5 & 1.96633 \\
\hline 400 & 400.98 & 3.806 & 286.16 & 301.6 & 1.99194 \\
\hline 410 & 411.12 & 4.153 & 293.43 & 283.3 & 2.01699 \\
\hline
\end{tabular}

\section*{Class Activity}
- Solution:
\[
\dot{W}_{i n}=\left(0.02 \frac{\mathrm{~kg}}{\mathrm{~s}}\right)\left(16 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right)+\left(0.02 \frac{\mathrm{~kg}}{\mathrm{~s}}\right)\left(400.98-280.13 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right)=2.74 \mathrm{~kW}
\]

\section*{Some Steady-Flow Energy Devices}
- Throttling valves
\(\square\) Throttling valves are any kind of flow-restricting devices that cause a significant pressure drop in the fluid (e.g., valves, capillary tubes, porous plugs)
- Unlike turbines, they produce a pressure drop without involving any work
\(\square\) The pressure drop in the fluid is often accompanied b a large drop in temperature, and for that reason throttling devices are commonly used in refrigeration and air-conditioning applications

(a) An adjustable valve

(b) A porous plug
(c) A capillary tube

\section*{Some Steady-Flow Energy Devices}
- Throttling valves


Figure 1

\section*{Some Steady-Flow Energy Devices}
- Throttling valves
\(\square\) They are usually small, the process can be adiabatic ( \(q \cong 0\) )
\(\square\) No work is done ( \(w \cong 0\) )
- \(\Delta p e \cong 0\)
- \(\Delta k e \cong 0\)
\[
\begin{gathered}
h_{2} \cong h_{1} \quad \text { (Isenthalpic device) } \\
u_{1}+P_{1} v_{1}=u_{2}+P_{2} v_{2} \\
\text { Internal energy }+ \text { Flow energy }=\text { Constant }
\end{gathered}
\]

\section*{Some Steady-Flow Energy Devices}
- Throttling valves
\(\square\) In case of an ideal gas, \(h=h(T)\), and thus the temperature has to remain constant during a throttling process:


\section*{CLASS ACTIVITY}

\section*{Class Activity}
- Refrigerant-134a enters the capillary tube of a refrigerator as saturated liquid at 0.8 MPa and is throttled to a pressure of 0.12 MPa . Determine the quality of the refrigerant at the final state and the temperature drop during this process

\section*{Class Activity}
- Solution:

At inlet: \(\left.\begin{array}{c}P_{1}=0.8 \mathrm{MPa} \\ \text { sat.liquid }\end{array}\right\} \rightarrow \begin{gathered}T_{1}=T_{\text {sat }} @ 0.8 \mathrm{MPa}=31.31^{\circ} \mathrm{C} \\ h_{1}=h_{f} @ 0.8 \mathrm{MPa}=95.48 \mathrm{~kJ} / \mathrm{kg}\end{gathered}\)
(Table A-12)

TABLE A-12
Saturated refrigerant-134a-Pressure table
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{2}{|r|}{Specific volume, \(\mathrm{m}^{3} / \mathrm{kg}\)} & \multicolumn{3}{|c|}{\begin{tabular}{l}
Internal energy, \\
kJ/kg
\end{tabular}} & \multicolumn{3}{|c|}{Enthalpy, kJ/kg} & \\
\hline \begin{tabular}{l}
Press., \\
P \\
kPa
\end{tabular} & Sat. temp.,
\[
T_{\text {sat }}{ }^{\circ} \mathrm{C}
\] & \begin{tabular}{l}
Sat. \\
liquid, \(u_{f}\)
\end{tabular} & \begin{tabular}{l}
Sat. \\
vapor,
\[
v_{g}
\]
\end{tabular} & \begin{tabular}{l}
Sat. \\
liquid, \\
\(u_{f}\)
\end{tabular} & Evap.,
\[
u_{f g}
\] & Sat. vapor, \(u_{g}\) & \begin{tabular}{l}
Sat. \\
liquid, \(h_{f}\)
\end{tabular} & Evap.,
\[
h_{f g}
\] & \begin{tabular}{l}
Sat. \\
vapor, \(h_{g}\)
\end{tabular} & \begin{tabular}{l}
Sat. \\
liquid, \\
\(s_{f}\)
\end{tabular} \\
\hline 700 & 26.69 & 0.0008331 & 0.029392 & 88.24 & 156.27 & 244.51 & 88.82 & 176.26 & 265.08 & 0.3323 \\
\hline 750 & 29.06 & 0.0008395 & 0.027398 & 91.59 & 154.11 & 245.70 & 92.22 & 174.03 & 266.25 & 0.3434 \\
\hline 800 & 31.31 & 0.0008457 & 0.025645 & 94.80 & 152.02 & 246.82 & 95.48 & 171.86 & 267.34 & 0.3540 \\
\hline 850 & 33.45 & 0.0008519 & 0.024091 & 97.88 & 150.00 & 247.88 & 98.61 & 169.75 & 268.36 & 0.3641 \\
\hline
\end{tabular}

\section*{Class Activity}
- Solution:

At exit \(\left.\begin{array}{c}P_{2}=0.12 M P a \\ h_{1}=h_{2}\end{array}\right\} \quad \rightarrow \begin{gathered}h_{f}=22.47 \mathrm{~kJ} / \mathrm{kg} \\ h_{g}=236.99 \mathrm{~kJ} / \mathrm{kg}\end{gathered} \rightarrow T_{\text {sat }}=-22.32{ }^{\circ} \mathrm{C}\)

TABLE A-12
Saturated refrigerant-134a-Pressure table
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{2}{|r|}{Specific volume,
\[
\mathrm{m}^{3} / \mathrm{kg}
\]} & \multicolumn{3}{|c|}{Internal energy,
\[
\mathrm{kJ} / \mathrm{kg}
\]} & \multicolumn{3}{|c|}{Enthalpy, kJ/kg} & \\
\hline \begin{tabular}{l}
Press., \\
P \\
kPa
\end{tabular} & Sat. temp.,
\[
T_{\mathrm{sat}}{ }^{\circ} \mathrm{C}
\] & \begin{tabular}{l}
Sat. \\
liquid, \(u_{f}\)
\end{tabular} & \begin{tabular}{l}
Sat. \\
vapor, \(v_{g}\)
\end{tabular} & \begin{tabular}{l}
Sat. \\
liquid,
\[
u_{f}
\]
\end{tabular} & Evap.,
\[
u_{f g}
\] & Sat. vapor, \(u_{g}\) & \begin{tabular}{l}
Sat. \\
liquid, \(h_{f}\)
\end{tabular} & Evap.,
\[
h_{f g}
\] & \begin{tabular}{l}
Sat. \\
vapor,
\[
h_{g}
\]
\end{tabular} & \begin{tabular}{l}
Sat. \\
liquid, \(s_{f}\)
\end{tabular} \\
\hline 60 & -36.95 & 0.0007097 & 0.31108 & 3.795 & 205.34 & 209.13 & 3.837 & 223.96 & 227.80 & 0.0163. \\
\hline 70 & -33.87 & 0.0007143 & 0.26921 & 7.672 & 203.23 & 210.90 & 7.722 & 222.02 & 229.74 & 0.0326 \\
\hline 80 & -31.13 & 0.0007184 & 0.23749 & 11.14 & 201.33 & 212.48 & 11.20 & 220.27 & 231.47 & 0.0470 \\
\hline 90 & -28.65 & 0.0007222 & 0.21261 & 14.30 & 199.60 & 213.90 & 14.36 & 218.67 & 233.04 & 0.0600 \\
\hline 100 & -26.37 & 0.0007258 & 0.19255 & 17.19 & 198.01 & 215.21 & 17.27 & 217.19 & 234.46 & 0.0718: \\
\hline 120 & -22.32 & 0.0007323 & 0.16216 & 22.38 & 195.15 & 217.53 & 22.47 & 214.52 & 236.99 & 0.0926 \\
\hline
\end{tabular}

\section*{Class Activity}
- Solution:
\[
\begin{gathered}
h_{f}<h_{2}<h_{g} \\
x_{2}=\frac{h_{2}-h_{f}}{h_{f g}}=\frac{95.48-22.47}{236.99-22.47}=0.340
\end{gathered}
\]


\section*{Some Steady-Flow Energy Devices}
- Mixing chambers
\(\square\) In engineering applications, mixing two streams of fluids is not a rate occurrence
\(\square\) They are usually well-insulated ( \(q \cong 0\) )
\(\square\) Do not involve any kind of work ( \(w \cong 0\) )
\(\square\) Kinetic and potential energies negligible ( \(k e \cong 0 \& p e \cong 0\) )


\section*{CLASS ACTIVITY}

\section*{Class Activity}
- Consider an ordinary shower where hot water at \(140^{\circ} \mathrm{F}\) is mixed with cold water at \(50^{\circ} \mathrm{F}\). If it is desired that a steady steam of warm water at \(110^{\circ} \mathrm{F}\) be supplied, determine the ratio of the mass flow rates of the hot to cold water. Assume the heat losses from the mixing chamber to be negligible and the mixing to take place at a pressure of 20 psia.

\section*{Class Activity}
- Solution (assumptions):
1. Steady-flow \(\left(\Delta m_{C V}=0\right.\) and \(\left.\Delta \mathrm{E}_{\mathrm{CV}}=0\right)\)
2. The kinetic and potential energy changes are zero ( \(\Delta \mathrm{ke}=\) \(\Delta p e=0)\)
3. Heat losses from the system are negligible ( \(\dot{Q} \cong 0\) )
4. There is no work interaction involved


\section*{Class Activity}
- Solution:
\[
\begin{aligned}
& \dot{m}_{\text {in }}-\dot{m}_{\text {out }}=\frac{d m_{\text {system }}}{d t}=0 \\
& \dot{m}_{\text {in }}=\dot{m}_{\text {out }} \rightarrow \dot{m}_{1}+\dot{m}_{2}=\dot{m}_{3} \\
& \dot{E}_{\text {in }}-\dot{E}_{\text {out }}=\frac{d E_{\text {system }}}{d t}=0 \\
& \dot{m}_{1} h_{1}+\dot{m}_{2} h_{2}=\dot{m}_{3} h_{3}
\end{aligned}
\]


\section*{Class Activity}
- Solution:
\[
\begin{aligned}
& \dot{m}_{1} h_{1}+\dot{m}_{2} h_{2}=\left(\dot{m}_{1}+\dot{m}_{2}\right) h_{3} \\
& \left(\frac{\dot{m}_{1}}{\dot{m}_{2}}\right) h_{1}+\left(\frac{\dot{m}_{2}}{\dot{m}_{2}}\right) h_{2}=\left(\frac{\dot{m}_{1}}{\dot{m}_{2}}+\left(\frac{\dot{m}_{2}}{\dot{m}_{2}}\right)\right) h_{3}
\end{aligned} \quad y=\frac{\dot{m}_{1}}{\dot{m}_{2}}
\]
\[
y h_{1}+h_{2}=(y+1) h_{3}
\]


\section*{Class Activity}
- Solution:
- The saturation temperature of water at 20 psia is \(227.92^{\circ} \mathrm{F}\). Since the temperature of all three steams are below this value ( \(\mathrm{T}<\mathrm{T}_{\text {sat }}\) ), the water in all three streams exists as a compressed liquid


\section*{Class Activity}

\section*{- Solution:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{Saturated water-Temperature table} \\
\hline & & Specific \(\mathrm{ft}^{3}\) & volume, lbm & Inter & energy, & /lbm & & alpy, Btu & bm & Entro & y, Btu/lb & - R \\
\hline \[
T^{\circ} \mathrm{F}
\] & \[
P_{\text {sat }} \mathrm{psia}
\] & \begin{tabular}{l}
Sat. \\
liquid, \(U_{f}\)
\end{tabular} & Sat. vapor,
\[
v_{g}
\] & Sat. liquid, \(u_{f}\) & Evap.,
\[
u_{f g}
\] & \begin{tabular}{l}
Sat. \\
vapor,
\[
u_{g}
\]
\end{tabular} & \begin{tabular}{l}
Sat. \\
liquid, \(h_{f}\)
\end{tabular} & \begin{tabular}{l}
Evap., \\
\(h_{f g}\)
\end{tabular} & Sat. vapor, \(h_{g}\) & \begin{tabular}{l}
Sat. \\
liquid, \(s_{f}\)
\end{tabular} & Evap.,
\[
S_{f g}
\] & \begin{tabular}{l}
Sat. \\
vapor,
\[
s_{g}
\]
\end{tabular} \\
\hline 32.018 & 0.08871 & 0.01602 & 3299.9 & 0.000 & 1021.0 & 1021.0 & 0.000 & 1075.2 & 1075.2 & 0.00000 & 2.18672 & 2.1867 \\
\hline 35 & 0.09998 & 0.01602 & 2945.7 & 3.004 & 1019.0 & 1022.0 & 3.004 & 1073.5 & 1076.5 & 0.00609 & 2.17011 & 2.1762 \\
\hline 40 & 0.12173 & 0.01602 & 2443.6 & 8.032 & 1015.6 & 1023.7 & 8.032 & 1070.7 & 1078.7 & 0.01620 & 2.14271 & 2.1589 \\
\hline 45 & 0.14756 & 0.01602 & 2035.8 & 13.05 & 1012.2 & 1025.3 & 13.05 & 1067.8 & 1080.9 & 0.02620 & 2.11587 & 2.1421 \\
\hline 50 & 0.17812 & 0.01602 & 1703.1 & 18.07 & 1008.9 & 1026.9 & 18.07 & 1065.0 & 1083.1 & 0.03609 & 2.08956 & 2.1256 \\
\hline 55 & 0.21413 & 0.01603 & 1430.4 & 23.07 & 1005.5 & 1028.6 & 23.07 & 1062.2 & 1085.3 & 0.04586 & 2.06377 & 2.1096 \\
\hline 60 & 0.25638 & 0.01604 & 1206.1 & 28.08 & 1002.1 & 1030.2 & 28.08 & 1059.4 & 1087.4 & 0.05554 & 2.03847 & 2.0940 \\
\hline 65 & 0.30578 & 0.01604 & 1020.8 & 33.08 & 998.76 & 1031.8 & 33.08 & 1056.5 & 1089.6 & 0.06511 & 2.01366 & 2.0788 \\
\hline 70 & 0.36334 & 0.01605 & 867.18 & 38.08 & 995.39 & 1033.5 & 38.08 & 1053.7 & 1091.8 & 0.07459 & 1.98931 & 2.0639 \\
\hline 75 & 0.43016 & 0.01606 & 739.27 & 43.07 & 992.02 & 1035.1 & 43.07 & 1050.9 & 1093.9 & 0.08398 & 1.96541 & 2.0494 \\
\hline 80 & 0.50745 & 0.01607 & 632.41 & 48.06 & 988.65 & 1036.7 & 48.07 & 1048.0 & 1096.1 & 0.09328 & 1.94196 & 2.0352 \\
\hline 85 & 0.59659 & 0.01609 & 542.80 & 53.06 & 985.28 & 1038.3 & 53.06 & 1045.2 & 1098.3 & 0.10248 & 1.91892 & 2.0214 \\
\hline 90 & 0.69904 & 0.01610 & 467.40 & 58.05 & 981.90 & 1040.0 & 58.05 & 1042.4 & 1100.4 & 0.11161 & 1.89630 & 2.0079 \\
\hline 95 & 0.81643 & 0.01612 & 403.74 & 63.04 & 978.52 & 1041.6 & 63.04 & 1039.5 & 1102.6 & 0.12065 & 1.87408 & 1.9947 \\
\hline 100 & 0.95052 & 0.01613 & 349.83 & 68.03 & 975.14 & 1043.2 & 68.03 & 1036.7 & 1104.7 & 0.12961 & 1.85225 & 1.9819 \\
\hline 110 & 1.2767 & 0.01617 & 264.96 & 78.01 & 968.36 & 1046.4 & 78.02 & 1031.0 & 1109.0 & 0.14728 & 1.80970 & 1.9570 \\
\hline
\end{tabular}

\section*{Class Activity}
- Solution:
\[
\begin{aligned}
& h_{1} \cong h_{f @ 140^{\circ} F}=107.99 \frac{B t u}{l b m} \\
& h_{2} \cong h_{f @ 50^{\circ} F}=18.07 \frac{B t u}{l b m} \\
& h_{3} \cong h_{f @ 110^{\circ} \mathrm{F}}=78.02 \frac{\mathrm{Btu}}{\mathrm{lbm}}
\end{aligned}
\]

\section*{Class Activity}
- Solution:
\(\square\) Solving for y and substituting yields:
\[
\begin{gathered}
y=\frac{h_{3}-h_{2}}{h_{1}-h_{3}}=\frac{78.02-18.07}{107.99-78.02}=2.0 \\
y=\frac{\dot{m}_{1}}{\dot{m}_{2}}=2 \rightarrow \dot{m}_{1}=2 \times \dot{m}_{2}
\end{gathered}
\]

\section*{Some Steady-Flow Energy Devices}
- Heat Exchangers
\(\square\) Under stead operation, the mass flow rate of each fluid stream flowing through a heat exchanger remains constant
\(\square\) Do not involve any kind of work ( \(w \cong 0\) )
\(\square\) Kinetic and potential energies negligible ( \(k e \cong 0 \& p e \cong 0\) )
\(\square \dot{Q}\) depends!

(a) System: Eintine lhat
exchanger \(\left(Q_{c v}=0\right.\) )

(b) System: Flaid A (Qcy + D)

\section*{Some Steady-Flow Energy Devices}

\section*{- Heat Exchangers}


\section*{Class Activity}
- Refrigerant 134a is to be cooled by water in a condenser. The refrigerant enters the condenser with a mass flow rate of \(6 \mathrm{~kg} / \mathrm{min}\) at 1 MPa and \(70^{\circ} \mathrm{C}\) (superheated) and leaves at 35 \({ }^{\circ} \mathrm{C}\) (compressed liquid). The cooling water enters at 300 kPa and \(15{ }^{\circ} \mathrm{C}\) and leaves at \(25^{\circ} \mathrm{C}\). Neglecting any pressure drops, determine:
a) The mass flow rate of the cooling water required
b) The heat transfer rate from the refrigerant to the water

\section*{Class Activity}
- Solution (assumptions):
1. Steady-flow \(\left(\Delta m_{C V}=0\right.\) and \(\left.\Delta \mathrm{E}_{\mathrm{CV}}=0\right)\)
2. The kinetic and potential energy changes are zero ( \(\Delta \mathrm{ke}=\) \(\Delta p e=0)\)
3. Heat losses from the system are negligible ( \(\dot{Q} \cong 0)\)
4. There is no work interaction involved
\(\dot{m}_{\text {in }}=\dot{m}_{\text {out }}\)
\(\dot{m}_{1}=\dot{m}_{2}=\dot{m}_{w}\)
\[
\dot{m}_{3}=\dot{m}_{4}=\dot{m}_{R}
\]


\section*{Class Activity}
- Solution (a):
\[
\begin{aligned}
& \dot{E}_{\text {in }}-\dot{E}_{\text {out }}=\frac{d E_{\text {system }}}{d t}=0 \\
& \dot{E}_{\text {in }}=\dot{E}_{\text {out }}
\end{aligned}
\]
\[
\dot{m}_{1} h_{1}+\dot{m}_{3} h_{3}=\dot{m}_{2} h_{2}+\dot{m}_{4} h_{4}
\]
\[
\dot{m}_{w}\left(h_{1}-h_{2}\right)=\dot{m}_{R}\left(h_{4}-h_{3}\right)
\]


\section*{Class Activity}
- Solution (a):
\(\square\) Water exits as a compressed liquid at both the inlet and exit since temperatures at both locations are below the saturation temperature of water at \(300 \mathrm{kPa}\left(113.53^{\circ} \mathrm{C}\right)\)
```

TABLE A-5

```

Saturated water-Pressure table
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Press.,
\[
P \mathrm{kPa}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Sat. } \\
\text { temp., } \\
T_{\text {sat }}{ }^{\circ} \mathrm{C}
\end{gathered}
\]} & \multicolumn{2}{|r|}{Specific volume,
\[
\mathrm{m}^{3} / \mathrm{kg}
\]} & \multicolumn{3}{|c|}{Internal energy,
\[
\mathrm{kJ} / \mathrm{kg}
\]} & \multicolumn{3}{|c|}{Enthalpy,
\[
\mathrm{kJ} / \mathrm{kg}
\]} \\
\hline & & \begin{tabular}{l}
Sat. \\
liquid,
\[
v_{f}
\]
\end{tabular} & \begin{tabular}{l}
Sat. \\
vapor,
\[
v_{g}
\]
\end{tabular} & \begin{tabular}{l}
Sat. \\
liquid, \\
\(u_{f}\)
\end{tabular} & Evap.,
\[
u_{f g}
\] & \begin{tabular}{l}
Sat. \\
vapor, \\
\(u_{g}\)
\end{tabular} & \begin{tabular}{l}
Sat. \\
liquid, \\
\(h_{f}\)
\end{tabular} & Evap.,
\[
h_{f g}
\] & \begin{tabular}{l}
Sat. \\
vapor,
\[
h_{g}
\]
\end{tabular} \\
\hline 250 & 127.41 & 0.001067 & 0.71873 & 535.08 & 2001.8 & 2536.8 & 535.35 & 2181.2 & 2716.5 \\
\hline 275 & 130.58 & 0.001070 & 0.65732 & 548.57 & 1991.6 & 2540.1 & 548.86 & 2172.0 & 2720.9 \\
\hline 300 & 133.52 & 0.001073 & 0.60582 & 561.11 & 1982.1 & 2543.2 & 561.43 & 2163.5 & 2724.9 \\
\hline 325 & 136.27 & 0.001076 & 0.56199 & 572.84 & 1973.1 & 2545.9 & 573.19 & 2155.4 & 2728.6 \\
\hline
\end{tabular}

\section*{Class Activity}
- Solution (a):
```

TABLE A-4

```

Saturated water-Temperature table
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Temp.,
\[
T^{\circ} \mathrm{C}
\]} & \multirow[b]{2}{*}{\begin{tabular}{l}
Sat. \\
press.,
\[
P_{\text {sat }} \mathrm{kPa}
\]
\end{tabular}} & \multicolumn{2}{|r|}{Specific volume,
\[
\mathrm{m}^{3} / \mathrm{kg}
\]} & \multicolumn{3}{|c|}{Internal energy,
\[
\mathrm{kJ} / \mathrm{kg}
\]} & \multicolumn{3}{|c|}{\begin{tabular}{l}
Enthalpy, \\
kJ/kg
\end{tabular}} \\
\hline & & \begin{tabular}{l}
Sat. \\
liquid, \(v_{f}\)
\end{tabular} & \begin{tabular}{l}
Sat. \\
vapor, \(v_{g}\)
\end{tabular} & \begin{tabular}{l}
Sat. \\
liquid, \(u_{f}\)
\end{tabular} & Evap.,
\[
u_{f g}
\] & \begin{tabular}{l}
Sat. \\
vapor,
\[
u_{g}
\]
\end{tabular} & \begin{tabular}{l}
Sat. \\
liquid, \\
\(h_{f}\)
\end{tabular} & Evap.,
\[
h_{f g}
\] & \begin{tabular}{l}
Sat. \\
vapor, \(h_{g}\)
\end{tabular} \\
\hline 0.01 & 0.6117 & 0.001000 & 206.00 & 0.000 & 2374.9 & 2374.9 & 0.001 & 2500.9 & 2500.9 \\
\hline 5 & 0.8725 & 0.001000 & 147.03 & 21.019 & 2360.8 & 2381.8 & 21.020 & 2489.1 & 2510.1 \\
\hline 10 & 1.2281 & 0.001000 & 106.32 & 42.020 & 2346.6 & 2388.7 & 42.022 & 2477.2 & 2519.2 \\
\hline 15 & 1.7057 & 0.001001 & 77.885 & 62.980 & 2332.5 & 2395.5 & 62.982 & 2465.4 & 2528.3 \\
\hline 20 & 2.3392 & 0.001002 & 57.762 & 83.913 & 2318.4 & 2402.3 & 83.915 & 2453.5 & 2537.4 \\
\hline 25 & 3.1698 & 0.001003 & 43.340 & 104.83 & 2304.3 & 2409.1 & 104.83 & 2441.7 & 2546.5 \\
\hline 30 & 4.2469 & 0.001004 & 32.879 & 125.73 & 2290.2 & 2415.9 & 125.74 & 2429.8 & 2555.6 \\
\hline
\end{tabular}
\(h_{1} \cong h_{f @ 15^{\circ} \mathrm{C}}=62.982 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\)
\(h_{2} \cong h_{f @ 25^{\circ} \mathrm{C}}=104.83 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\)

\section*{Class Activity}
- Solution (a):
\[
\left.\begin{array}{c}
P_{3}=1 \mathrm{MPa} \\
T_{3}=70^{\circ} \mathrm{C}
\end{array}\right\} \quad(\text { superheated }) \rightarrow h_{3}=303.87 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
\]

\section*{TABLE A-13}

Superheated refrigerant-134a
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& T \\
& { }^{\circ} \mathrm{C}
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{u} \\
& \mathrm{~m}^{3} / \mathrm{kg}
\end{aligned}
\]} & \(u\) & \(h\) & \(s\) \\
\hline & & kJ/kg & kJ/kg & \(\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}\) \\
\hline Sat. & & \multicolumn{3}{|l|}{\(P=1.00 \mathrm{MPa}\left(T_{\text {sat }}=39.37^{\circ} \mathrm{C}\right)\)} \\
\hline 40 & 0.020319 & 250.71 & 271.04 & 0.9157 \\
\hline 50 & 0.020406 & 251.32 & 271.73 & 0.9180 \\
\hline 60 & 0.021796 & 260.96 & 282.76 & 0.9526 \\
\hline & 0.023068 & 270.33 & 293.40 & 0.9851 \\
\hline & 0.024261 & 279.61 & 303.87 & 1.0160 \\
\hline 80 & & & & \\
\hline & 0.025398 & 288.87 & 314.27 & 1.0459 \\
\hline 90 & & & & \\
\hline & 0.026492 & 298.17 & 324.66 & 1.0749 \\
\hline 100 & 0.027552 & 307.52 & 335.08 & 1.1032 \\
\hline 110 & 0.028584 & 316.96 & 345.54 & 1.1309 \\
\hline 120 & 0.029592 & 326.49 & 356.08 & 1.1580 \\
\hline 130 & 0.030581 & 336.12 & 366.70 & 1.1847 \\
\hline 140 & 0.031554 & 345.87 & 377.42 & 1.2110 \\
\hline 150 & 0.032512 & 355.73 & 388.24 & 1.2369 \\
\hline 160 & 0.033457 & 365.71 & 399.17 & 1.2624 \\
\hline 170 & 0.034392 & 375.82 & 410.22 & 1.2876 \\
\hline 180 & 0.035317 & 386.06 & 421.38 & 1.3125 \\
\hline
\end{tabular}

\section*{Class Activity}
- Solution (a):
\[
\left.\begin{array}{c}
P_{3}=1 \mathrm{MPa} \\
T_{3}=35^{\circ} \mathrm{C}
\end{array}\right\} \quad(\text { compressed liquid }) \rightarrow h_{4}=h_{f @ 35^{\circ} \mathrm{C}}=100.88 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
\]

\section*{TABLE A-11}

Saturated refrigerant-134a-Temperature table
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{2}{|r|}{Specific volume,
\[
\mathrm{m}^{3} / \mathrm{kg}
\]} & \multicolumn{3}{|c|}{\begin{tabular}{l}
Internal energy, \\
kJ/kg
\end{tabular}} & \multicolumn{3}{|c|}{Enthalpy,
\[
\mathrm{kJ} / \mathrm{kg}
\]} \\
\hline Temp.
\[
T^{\circ} \mathrm{C}
\] & \begin{tabular}{l}
Sat. \\
press.,
\[
P_{\text {sat }} \mathrm{kPa}
\]
\end{tabular} & Sat. liquid, \(v_{f}\) & Sat. vapor,
\[
v_{g}
\] & \begin{tabular}{l}
Sat. \\
liquid, \(u_{f}\)
\end{tabular} & Evap.,
\[
u_{f g}
\] & Sat. vapor,
\[
u_{g}
\] & Sat. liquid, \(h_{f}\) & Evap.,
\[
h_{f g}
\] & \begin{tabular}{l}
Sat. \\
vapor, \\
\(h_{g}\)
\end{tabular} \\
\hline 34 & 863.11 & 0.0008535 & 0.023712 & 98.67 & 149.48 & 248.15 & 99.41 & 169.21 & 268.61 \\
\hline 36 & 912.35 & 0.0008595 & 0.022383 & 101.56 & 147.55 & 249.11 & 102.34 & 167.19 & 269.53 \\
\hline 38 & 963.68 & 0.0008657 & 0.021137 & 104.47 & 145.60 & 250.07 & 105.30 & 165.13 & 270.44 \\
\hline
\end{tabular}

\section*{Class Activity}
- Solution (a):
\[
\begin{aligned}
& \dot{m}_{w}(62.982-104.83)\left(\frac{\mathrm{kJ}}{\mathrm{~kg}}\right)=\left(6 \frac{\mathrm{~kg}}{\min }\right)[100.88-303.87]\left(\frac{\mathrm{kJ}}{\mathrm{~kg}}\right) \\
& \dot{m}_{w}=29.1 \frac{\mathrm{~kg}}{\min }
\end{aligned}
\]

\section*{Class Activity}
- Solution (b):
\(\square\) We need to choose a control volume for this part: either water or the refrigerant. Here we chose water for no specific reason
\[
\begin{aligned}
& \dot{E}_{\text {in }}-\dot{E}_{\text {out }}=\frac{d \dot{E}_{\text {system }}}{d t}=0 \\
& \dot{E}_{\text {in }}=\dot{E}_{\text {out }} \\
& \dot{Q}_{w, \text { in }}+\dot{m}_{w} h_{1}=\dot{m}_{w} h_{2} \\
& \dot{Q}_{w, \text { in }}=\dot{m}_{w}\left(h_{2}-h_{1}\right)=\left(29.1 \frac{\mathrm{~kg}}{\mathrm{~min}}\right)=\left[(104.83)-(62.982) \frac{\mathrm{kJ}}{\mathrm{~kg}}\right]=1218 \frac{\mathrm{~kJ}}{\mathrm{~min}}
\end{aligned}
\]```

