CAE 208 Thermal-Fluids Engineering I MMAE 320: Thermodynamics

Fall 2022

October 11, 2022

Energy analysis of closed systems (III)

Built Environment Research

Advancing energy, environmental, and sustainability research within the built environment

www.built-envi.com

Dr. Mohammad Heidarinejad, Ph.D., P.E.

Civil, Architectural and Environmental Engineering
Illinois Institute of Technology

muh182@iit.edu

ANNOUNCEMENTS

Announcements

For the first midterm exam:

- ☐ I posted the pages that I will provide during the exam (i.e., tables, equations). Are there any equations that you would like to see?
- ☐ The exam is closed book close notes during the class time
- ☐ The exam is on October 13 in person (next lecture)
- ☐ If you miss the exam, there is no make up exam given the fact the best two out of three will count
- ☐ Please come a few minutes early

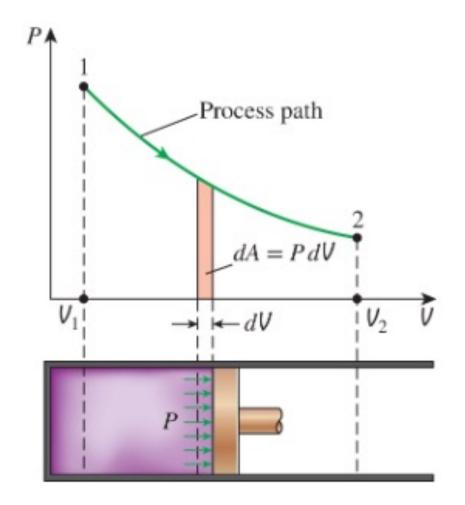
Announcements

ASCE, ASHRAE, CMAA, EWB, ITRC, SEAOI, & SEES PRESENT

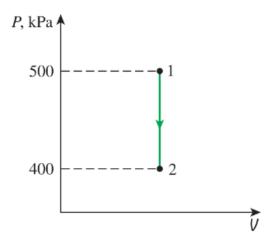
T U E S D A Y

18TH

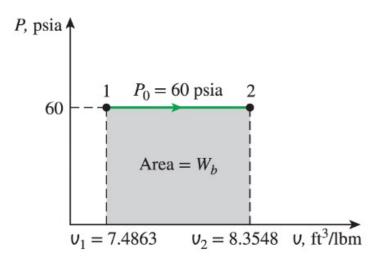
OCTOBER 2022


Herman Hall Expo 2pm - 5pm

RECAP

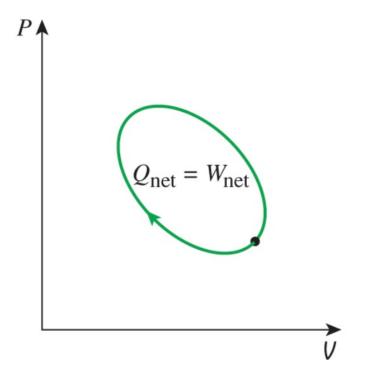

• For a quasi-equilibrium expansion process, we can write:

$$Area = A = \int_{1}^{2} dA = \int_{1}^{2} PdV$$

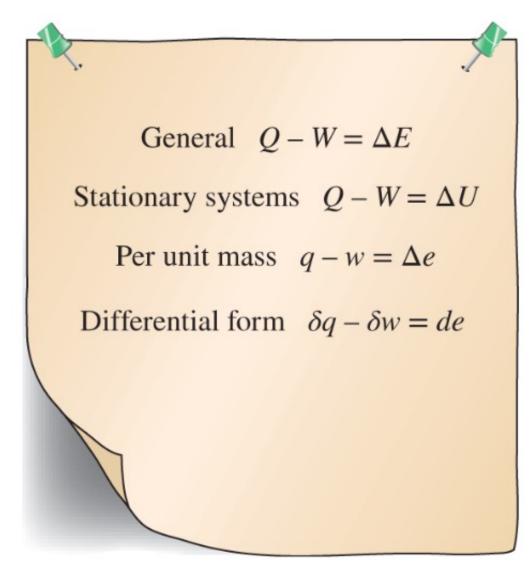

$$W_b = \int_1^2 P_i dV$$

Constant Volume

Constant Pressure

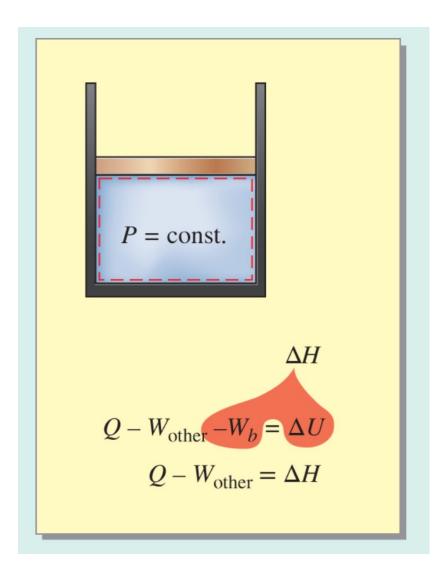

Moving boundary work under different processes

Process	Moving boundary work
Constant volume	0
Constant pressure	$P_0(V_2-V_1)$
Isothermal	$P_{1}V_{1} \times Ln(\frac{V_{2}}{V_{1}})$ $P_{1}V_{1} \times Ln(\frac{P_{1}}{P_{2}})$ $mRT_{o} \times Ln(\frac{V_{2}}{V_{1}})$
Polytropic	$\frac{P_{2}V_{2} - P_{1}V_{1}}{1 - n}$ $\frac{mR(T_{2} - T_{1})}{1 - n}$

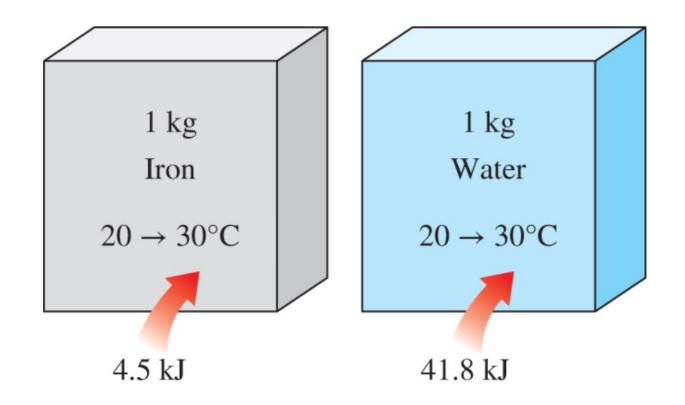

 For a closed system undergoing a cycle, the initial and final states are identical:

$$\Delta E = E_{in} - E_{out} = 0 \quad \rightarrow E_{in} = E_{out}$$

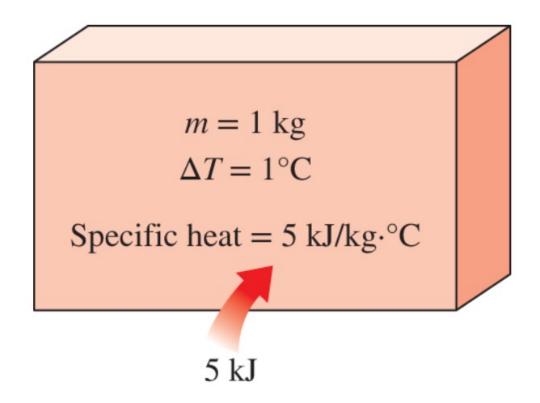
$$W_{net,out} = Q_{net,in} \rightarrow \dot{W}_{net,out} = \dot{Q}_{net,in}$$



We can write:

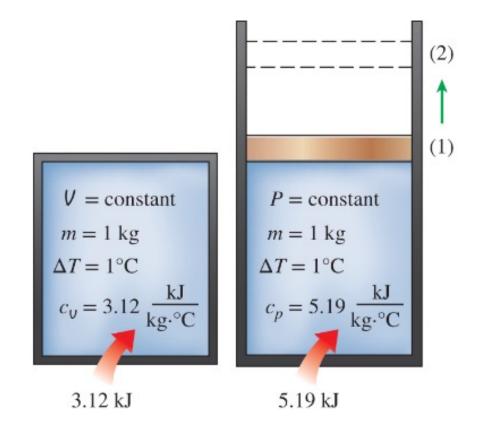

• For a constant pressure process with constant mass, we

have:



SPECIFIC HEATS

 How much heat do we need to add to increase temperature of 1 kg iron vs water for 10 °C?

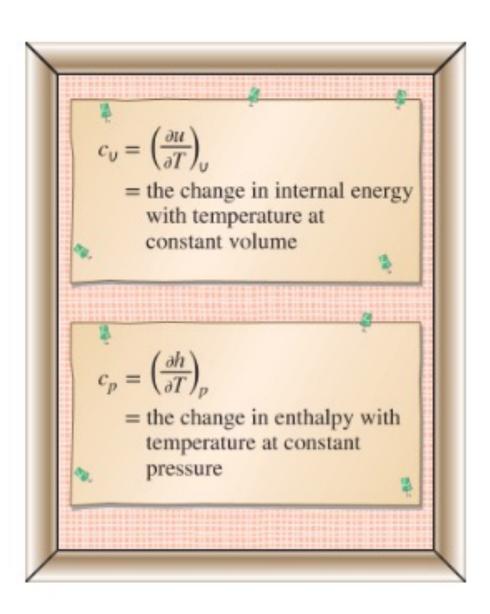


 Specific heat is defined as the energy required to raise temperature of a unit mass of substance by one degree

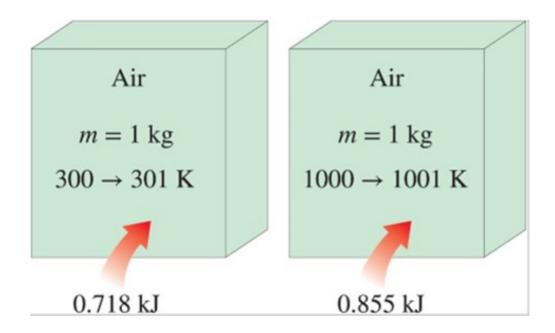
- Specific heat is defined as the energy required to raise temperature of a unit mass of substance by one degree
 - \Box Specific heat at constant volume (c_v)
 - ☐ Specific heat at constant pressure (c_p)

- Specific heat is defined as the energy required to raise temperature of a unit mass of substance by one degree
 - \square Specific heat at constant volume (c_v)
 - ☐ Specific heat at constant pressure (c_p)

 Let's start from the fixed mass in a stationary closed system that undergoes a constant volume process

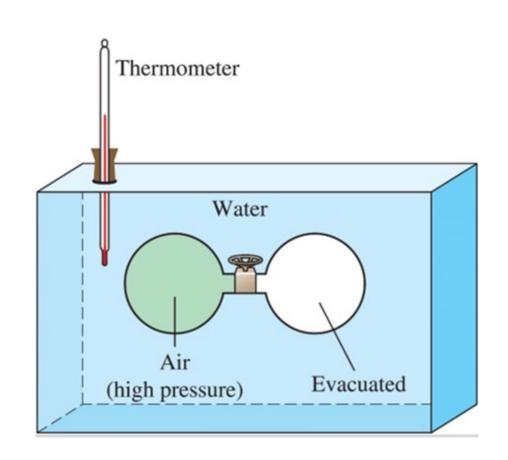

$$\delta e_{in} - \delta e_{out} = du$$

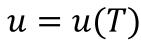
$$c_{v}dT = du$$


$$c_v = \left(\frac{\partial u}{\partial T}\right)_v$$

 Similarly, we can write the following for a constant pressure process:

$$c_p = \left(\frac{\partial h}{\partial T}\right)_p$$

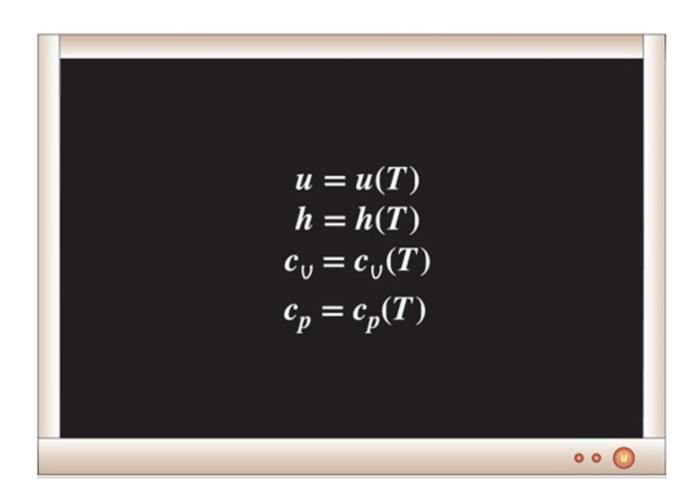

- c_p and c_v are defined based on properties. They must be properties too
- The energy required to raise the temperature of a substance by one degree is different at different temperatures and pressures



- A common unit for specific heats is $\frac{kJ}{kg-^{\circ}C}$ or $\frac{kJ}{kg-K}$ (why?)
- We can write them in the molar basis too $\frac{kJ}{kmol-^{\circ}C}$ or $\frac{kJ}{kmol-K}$ for $\overline{c_p}$ and $\overline{c_v}$

INTERNAL ENERGY, ENTHALPY, AND SPECIFIC HEATS OF IDEAL GASES

 It has demonstrated mathematically and experimentally that internal energy is a function of temperature:

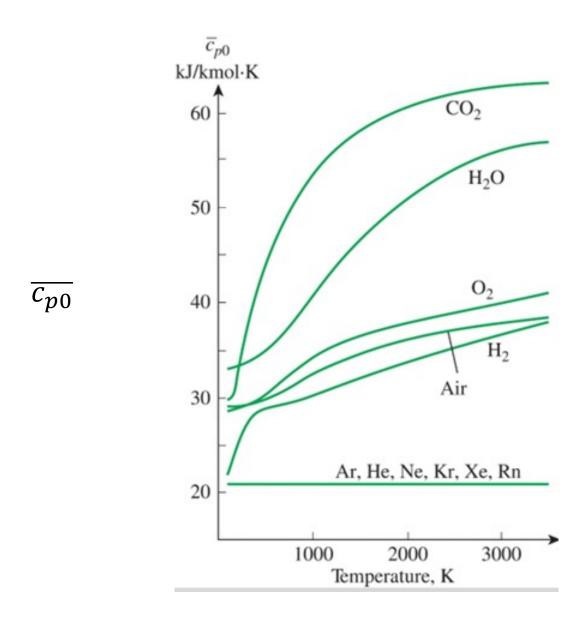


 Using the definition of enthalpy and the equation of state of an ideal gas, we have:

$$u = u(T)$$

$$\begin{cases} h = u + Pv \\ Pv = RT \end{cases} \rightarrow h = u + RT \rightarrow h = h(T)$$

We have:


 The change in internal energy or enthalpy for an ideal gas during a process from state 1 to state 2 is determined by integrating these equations

$$\Delta u = u_2 - u_1 = \int_1^2 c_v (T) dt$$

$$\Delta h = h_2 - h_1 = \int_1^2 c_p (T) dt$$

- At low pressures, all real gases approach ideal-gas behavior, and therefore their specific heats depend on temperature only
- The specific heats of real gases at low pressures are called ideal-gas specific heats, or zero-pressure specific heats, and are often denoted c_{p0} and c_{v0}

Ideal gas constant pressure specific heats for some gases:

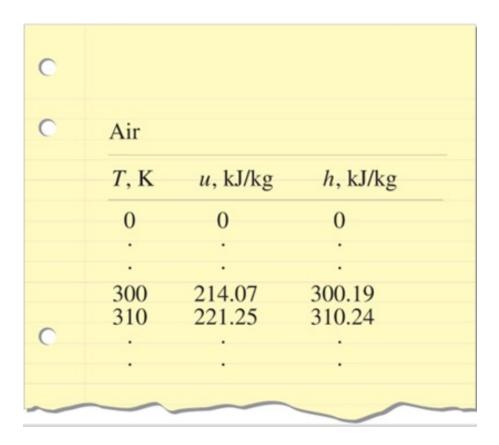
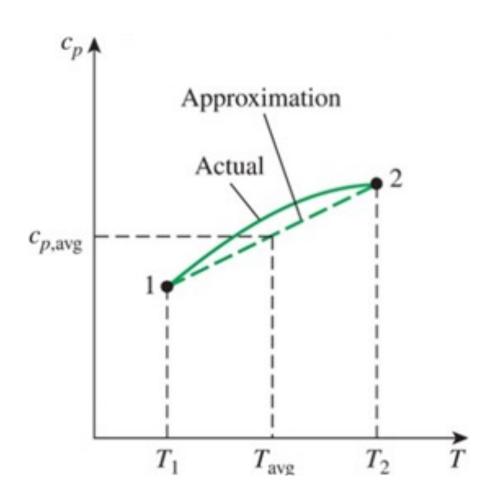


Table A-2c

(c) As a function of temperature								
	$\overline{c}_p = a + bT + cT^2 + dT^3$ $(T \text{ in K, } c_p \text{ in kJ/kmol} \cdot \text{K})$							
Substance	Formula	a	b	c	d	Temper range, I		
Nitrogen	N_2	28.90	-0.1571×10^{-2}	0.8081×10^{-5}	-2.873×10^{-9}	273		
Oxygen	O_2	25.48	1.520×10^{-2}	-0.7155×10^{-5}	1.312×10^{-9}	273		
Air	_	28.11	0.1967×10^{-2}	0.4802×10^{-5}	-1.966×10^{-9}	273		

- u and h data for a number of gases have been tabulated
- These tables are obtained by choosing an arbitrary reference point and performing the integrations by treating state 1 as the reference state

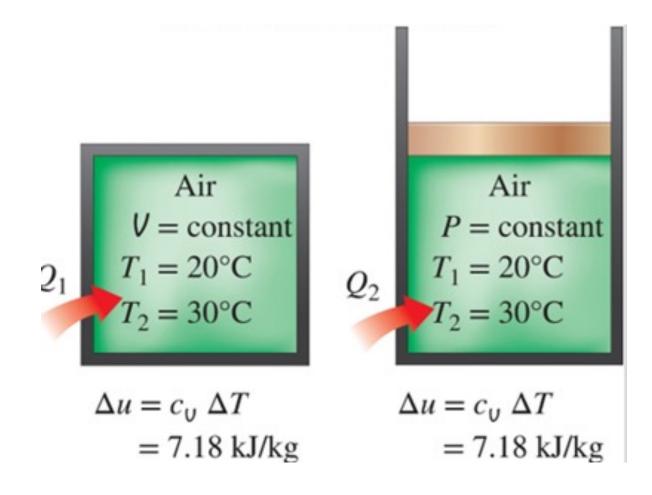
We can use the tables:

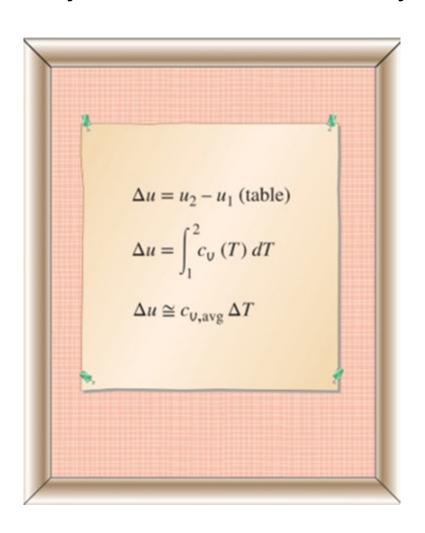

TABLE A-21											
Ideal-gas properties of air											
T K	<i>h</i> kJ/kg	P_r	и kJ/kg	U _r	s° kJ/kg ⋅ K	T K	<i>h</i> kJ/kg	P_r	u kJ/kg	U _r	s° kJ/kg ⋅ K
200	199.97	0.3363	142.56	1707.0	1.29559	580	586.04	14.38	419.55	115.7	2.37348
210	209.97	0.3987	149.69	1512.0	1.34444	590	596.52	15.31	427.15	110.6	2.39140
220	219.97	0.4690	156.82	1346.0	1.39105	600	607.02	16.28	434.78	105.8	2.40902
230	230.02	0.5477	164.00	1205.0	1.43557	610	617.53	17.30	442.42	101.2	2.42644
240	240.02	0.6355	171.13	1084.0	1.47824	620	628.07	18.36	450.09	96.92	2.44356
250	250.05	0.7329	178.28	979.0	1.51917	630	638.63	19.84	457.78	92.84	2.46048
260	260.09	0.8405	185.45	887.8	1.55848	640	649.22	20.64	465.50	88.99	2.47716
270	270.11	0.9590	192.60	808.0	1.59634	650	659.84	21.86	473.25	85.34	2.49364
280	280.13	1.0889	199.75	738.0	1.63279	660	670.47	23.13	481.01	81.89	2.50985
285	285.14	1.1584	203.33	706.1	1.65055	670	681.14	24.46	488.81	78.61	2.52589

 Internal energy and enthalpy change when specific heat is taken constant at an average value

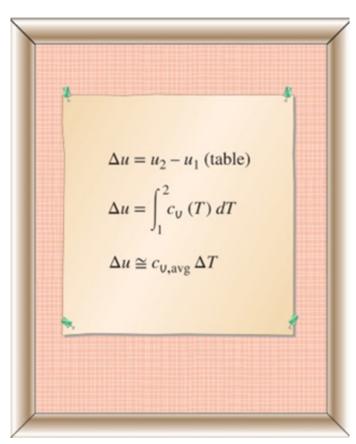
$$u_2 - u_1 = c_{v,avg}(T_2 - T_1)$$

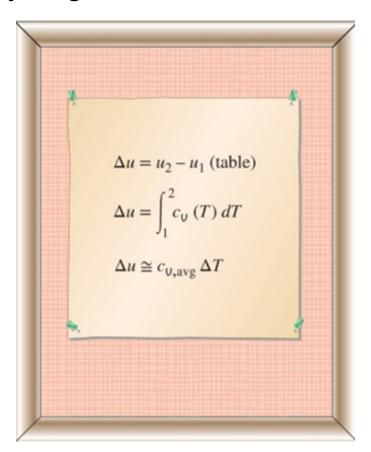
$$h_2 - h_1 = c_{p,avg}(T_2 - T_1)$$


 For small temperature intervals, the specific heats may be assumed to vary linearly with temperature


Interpolation:

(b) At various temperatures								
Temperature,	c_p kJ/kg \cdot K	$c_{_{ extsf{U}}}$ kJ/kg \cdot K	k	c_p kJ/kg \cdot K	$c_{ m v}$ kJ/kg \cdot K	k	c_p kJ/kg \cdot K	
K	Air				Carbon dioxide, CO ₂			
250	1.003	0.716	1.401	0.791	0.602	1.314	1.039	
300	1.005	0.718	1.400	0.846	0.657	1.288	1.040	
350	1.008	0.721	1.398	0.895	0.706	1.268	1.043	
400	1.013	0.726	1.395	0.939	0.750	1.252	1.047	
450	1.020	0.733	1.391	0.978	0.790	1.239	1.054	
500	1.029	0.742	1.387	1.014	0.825	1.229	1.063	


• The relation $\Delta u = c_v \Delta T$ is valid for any kind of process, constant-volume or not


- Three ways to calculate Δh and Δu :
 - 1. By using the tabulated u and h data. This is the easiest and most accurate way when tables are readily available

- Three ways to calculate Δh and Δu :
 - 2. By using the c_v or c_p relations (Table A-2c) as a function of temperature and performing the integrations. This is very inconvenient for hand calculations but quite desirable for computerized calculations. The results obtained are very accurate

- Three ways to calculate Δh and Δu :
 - 3. By using average specific heats. This is very simple and certainly very convenient when property tables are not available. The results obtained are reasonably accurate if the temperature interval is not very large

We have:

$$h = u + RT$$

$$dh = du + RdT$$

$$dh = c_p dT$$

$$du = c_{\nu}dT$$

$$c_p dT = c_v dT + RdT$$

$$c_p - c_v = R$$

- Specific heat ratio (k):
 - ☐ For monatomic (e.g., Helium) gases the value is 1.667
 - ☐ For many diatomic gases, including air, the value is 1.4

$$k = \frac{c_p}{c_v}$$

CLASS ACTIVITY

- Air at 300 K and 200 kPa is heated at constant pressure to 600 K. Determine the change in internal energy of air per unit mass from
 - a) Data from the air table (Table A-21)
 - b) The functional form of the specific heat (Table A-2c)
 - c) The average specific heat value (Table A-2b)

• Solution (a): TABLE A-21

IABLE	A-21										
Ideal-gas properties of air											
T K	<i>h</i> kJ/kg	P_r	u kJ/kg	\mathbf{U}_r	s° kJ/kg ∙ K	T K	h kJ/kg	P_r	u kJ/kg	\mathbf{U}_r	s° kJ/kg ∙ K
200	199.97	0.3363	142.56	1707.0	1.29559	580	586.04	14.38	419.55	115.7	2.37348
210	209.97	0.3987	149.69	1512.0	1.34444	590	596.52	15.31	427.15	110.6	2.39140
220	219.97	0.4690	156.82	1346.0	1.39105	600	607.02	16.28	434.78	105.8	2.40902
230	230.02	0.5477	164.00	1205.0	1.43557	610	617.53	17.30	442.42	101.2	2.42644
240	240.02	0.6355	171.13	1084.0	1.47824	620	628.07	18.36	450.09	96.92	2.44356
250	250.05	0.7329	178.28	979.0	1.51917	630	638.63	19.84	457.78	92.84	2.46048
260	260.09	0.8405	185.45	887.8	1.55848	640	649.22	20.64	465.50	88.99	2.47716
270	270.11	0.9590	192.60	808.0	1.59634	650	659.84	21.86	473.25	85.34	2.49364
280	280.13	1.0889	199.75	738.0	1.63279	660	670.47	23.13	481.01	81.89	2.50985
285	285.14	1.1584	203.33	706.1	1.65055	670	681.14	24.46	488.81	78.61	2.52589
290	290.16	1.2311	206.91	676.1	1.66802	680	691.82	25.85	496.62	75.50	2.54175
295	295.17	1.3068	210.49	647.9	1.68515	690	702.52	27.29	504.45	72.56	2.55731
298	298.18	1.3543	212.64	631.9	1.69528	700	713.27	28.80	512.33	69.76	2.57277
300	300.19	1.3860	214.07	621.2	1.70203	710	724.04	30.38	520.23	67.07	2.58810

$$\Delta u = u_2 - u_1 = 434.78 - 214.07 = 220.71 \frac{kJ}{kg}$$

Solution (b): Table 2A-c

(c) As a function of temperature								
			$\overline{c}_p = a + bT + cT^2 + dT^3$ (<i>T</i> in K, c_p in kJ/kmol · K)					
Substance	Formula	а	Ь	c	d To			
Nitrogen	N ₂	28.90	-0.1571×10^{-2}	0.8081×10^{-5}	-2.873×10^{-9}			
Oxygen	O_2	25.48	1.520×10^{-2}	-0.7155×10^{-5}	1.312×10^{-9}			
Air	-	28.11	0.1967×10^{-2}	0.4802×10^{-5}	-1.966×10^{-9}			
Hydrogen	H_2	29.11	-0.1916×10^{-2}	0.4003×10^{-5}	-0.8704×10^{-9}			

$$\overline{c_p} = a + bT + cT^2 + dT^3$$

$$\overline{c_v} = \overline{c_p} - R_u = a + bT + cT^2 + dT^3$$

Solution (b): Table 2A-c

$$\bar{c_p} = a + bT + cT^2 + dT^3$$

$$\bar{c_v} = \bar{c_p} - R_u = a + bT + cT^2 + dT^3$$

$$\Delta \bar{u} = \int_{T_1}^{T_2} \bar{c_v}(T) dT = \bar{c_p} - R_u = \int_{T_1}^{T_2} [(a - R_u) + bT + cT^2 + dT^3] dT$$

$$\Delta \bar{u} = 6447 \frac{\text{kJ}}{\text{kmol}}$$

Solution (b): Table A-1

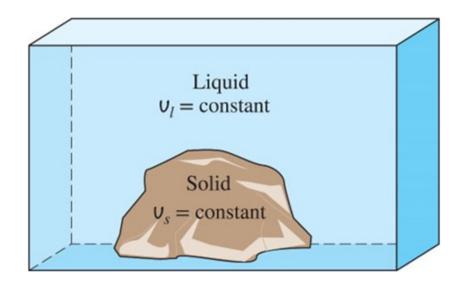
$$\Delta \bar{u} = 6447 \frac{\text{kJ}}{\text{kmol}}$$

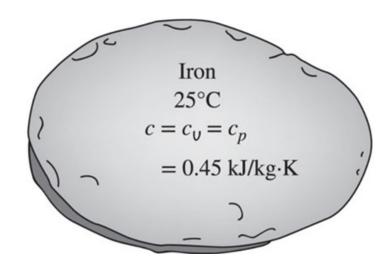
TABLE A-1						
Molar mass, gas constant, and critical-point properties						
Substance	Formula	Molar mass, M kg/kmol	Gas constant, R kJ/kg · K*			
Air	-	28.97	0.2870			
Ammonia	NH ₃	17.03	0.4882			
Argon	Ar	39.948	0.2081			
Benzene	C_6H_6	78.115	0.1064			

$$\Delta u = \frac{\Delta \overline{u}}{M} = \frac{6447 \frac{\text{kJ}}{\text{kmol}}}{28.97 \frac{kg}{kmol}} = 222.5 \frac{kJ}{kg}$$

Solution (c): Table A-2b

$$Average\ Temp = \frac{T_1 + T_2}{2}$$


$$c_{v,avg} = c_{v,450 \, K} = 0.7333 \, \frac{kJ}{kg - K}$$


$$\Delta u = \left(0.7333 \frac{kJ}{kg - K}\right) (600 - 300) = 220 \frac{kJ}{kg}$$

(b) At various temperatures						
Temperature,	c_p kJ/kg \cdot K	$c_{_{\scriptscriptstyle U}}$ kJ/kg \cdot K	k			
K		Air				
250	1.003	0.716	1.401			
300	1.005	0.718	1.400			
350	1.008	0.721	1.398			
400	1.013	0.726	1.395			
450	1.020	0.733	1.391			
500	1.029	0.742	1.387			
550	1.040	0.753	1.381			
600	1.051	0.764	1.376			
650	1.063	0.776	1.370			
700	1.075	0.788	1.364			
750	1.087	0.800	1.359			
800	1.099	0.812	1.354			
900	1.121	0.834	1.344			
1000	1.142	0.855	1.336			

INTERNAL ENERGY, ENTHALPY, AND SPECIFIC HEATS OF SOLIDS AND LIQUIDS

- Incompressible substance is a substance whose specific volume (or density) is constant.
- Solids and liquids are incompressible substances.

$$c_p = c_v = c$$

Internal energy changes:

$$du = c_{v}dT = c(T)dt$$

$$\Delta u = u_2 - u_1 = \int_1^2 c(T)dt$$

$$\Delta u \cong c_{avg}(T_2 - T_1)$$

Enthalpy changes:

$$h = u + PV$$

$$dh = du + dP \times V + P \times dV$$

$$\Delta h \cong \Delta u + V \times \Delta P \sim c_{av,g} \times \Delta T + v \times \Delta P$$

- We can say:
 - ☐ For solids

$$\Delta h = \Delta u + V \times \Delta P \cong c_{avg} \times \Delta T + v \times \Delta P \cong c_{avg} \times \Delta T$$

☐ For liquids (constant pressure process such as heaters):

$$h = \Delta u \cong c_{avg} \times \Delta T$$

☐ For liquids (constant temperature process such as pumps):

$$h = v \times \Delta P$$

The enthalpy of a compressed liquid:

$$h_{@P,T} \cong h_{f@T} + v_{f@T}(P - P_{sat @T})$$

$$h_{@P,T} \cong h_{f@T}$$