CAE 208 Thermal-Fluids Engineering I MMAE 320: Thermodynamics

Fall 2022

October 03, 2022
 Energy analysis of closed systems (I)

Built
Environment
Research
@ IIT
d mor
Advancing energy, environmental, and sustainability research within the built environment Civil, Architectural and Environmental Engineering www.built-envi.com

Dr. Mohammad Heidarinejad, Ph.D., P.E. Illinois Institute of Technology muh182@iit.edu

ANNOUNCEMENTS

Announcements

- First problem solving session was yesterday (watch the recording and posted notes)

ranupio conlent

Announcements

- The second problem solving session is today

Announcements

- Assignment 5 is posted

Announcements

- For the first midterm exam:
\square I will post the pages that I will provide during the exam (e.g., tables, equations) in advance
The exam is closed book close notes during the class time
The exam is on October 13 in person

Announcements

SPEAKER
Matthew Duffy
Business Development Manager

WHEN

October 6 ${ }^{\text {th }}, 2022$
12:40pm - 1:40pm

WHERE
John T. Rettaliata Engineering Center, RE 034

TALK ABOUT
\checkmark Work experiences
\checkmark IESVE (Virtual
Environment
Software)
For more
information, feel free to contact ASHRAE official email
ashrae_iit@iit.edu

Lunch will be provided!

MOVING BOUNDARY WORK

Moving Boundary Work

- The expansion or compression work is often called moving boundary work or simply boundary work

Think about internal combustion engines

Moving Boundary Work

- The moving work associated with real engines or compressors cannot be determined exactly from a thermodynamic analysis alone!

Moving Boundary Work

- Consider the gas enclosed in the cylinder-piston device
- The process is quasi equilibrium ($d s$)

$$
\delta W_{b}=F d s=P A d s=P d V
$$

Moving Boundary Work

- Let's think about $d V$

Moving Boundary Work

- The total boundary work done during the entire process as the piston moves is obtained by adding all the differential works from the initial state to the final state

$$
W_{b}=\int_{1}^{2} P d V
$$

Moving Boundary Work

- For a quasi-equilibrium expansion process, we can write:

$$
\text { Area }=A=\int_{1}^{2} d A=\int_{1}^{2} P d V
$$

Moving Boundary Work

- Basically we can say:

The area under the process curve on a P - V diagram is equal, in magnitude, to the work done during a quasi-equilibrium expansion or compression process of a closed system (on the P-V diagram, in presents the boundary work done per unit mass)

Moving Boundary Work

- The boundary work done during a process depends on the path followed as well as the end states:

Moving Boundary Work

- The net work done during a cycle is the difference between the work done by the system and the work done on the system:

Moving Boundary Work

- We can use the equation for nonquasi-equilibrium process since properties are defined for equilibrium states only

$$
W_{b}=\int_{1}^{2} P_{i} d V
$$

Moving Boundary Work

- We can use the equation for nonquasi-equilibrium process since properties are defined for equilibrium states only

$$
W_{b}=W_{\text {friction }}+W_{\text {atm }}+W_{\text {crank }}=\int_{1}^{2}\left(F_{\text {friction }}+P_{\text {atm }} A+F_{\text {crank }}\right) d x
$$

CLASS ACTIVITY

Class Activity

- A rigid tank contains air at 500 kPa and $150^{\circ} \mathrm{C}$. As a result of heat to the surroundings, the temperature and pressure inside the tank drop to $65^{\circ} \mathrm{C}$ and 400 kPa , respectively. Determine the boundary work done during this process

Class Activity

- Solution

CLASS ACTIVITY

Class Activity

- A frictionless piston-cylinder device contains 10 lbm of steam at 60 psia and $320^{\circ} \mathrm{F}$. Heat is now transferred to the steam until the temperature reaches $400^{\circ} \mathrm{F}$. If the piston is not attached to a shaft and its mass is constant, determine work done by the steam during this process.

Class Activity

- Solution:
$W_{b}=\int_{1}^{2} P d V=P_{0} \int_{1}^{2} d V=P_{0}\left(V_{2}-V_{1}\right)$
$W_{b}=m P_{0}\left(v_{2}-v_{1}\right)$

Heat

Class Activity

- Solution:

$$
\begin{aligned}
& \left\{\begin{array}{l}
P_{1}=60 \mathrm{psia} \\
T_{1}=320^{\circ} \mathrm{F}
\end{array}\right. \\
& v_{1}=7.4863 \frac{f t^{3}}{\mathrm{lbm}}
\end{aligned}\left\{\begin{array}{l}
\left\{\begin{array}{l}
P_{2}=60 \mathrm{psia} \\
T_{2}=400^{\circ} \mathrm{F}
\end{array} v_{2}=8.3548 \frac{\mathrm{ft}^{3}}{\mathrm{lbm}}\right.
\end{array}\right.
$$

$$
\begin{aligned}
W_{b} & =m P_{0}\left(v_{2}-v_{1}\right) \\
& =(10 l b m)(8.3548-7.4863)\left(\frac{f t^{3}}{l b m}\right)\left(\frac{1 B t u}{5.404 p s i a-f t^{3}}\right)=96.4 \mathrm{Btu}
\end{aligned}
$$

Class Activity

Conversion Factors

Dimension	Metric	English
Acceleration	$1 \mathrm{~m} / \mathrm{s}^{2}=100 \mathrm{~cm} / \mathrm{s}^{2}$	$\begin{aligned} & 1 \mathrm{~m} / \mathrm{s}^{2}=3.2808 \mathrm{ft} / \mathrm{s}^{2} \\ & 1 \mathrm{ft} / \mathrm{s}^{2}=0.3048 \mathrm{~m} / \mathrm{s}^{2} \end{aligned}$
Area	$1 \mathrm{~m}^{2}=104 \mathrm{~cm}^{2}=10^{6} \mathrm{~mm}^{2}=10^{-6} \mathrm{~km}^{2}$	$\begin{aligned} & 1 \mathrm{~m}^{2}=1550 \mathrm{in.}^{2}=10.764 \mathrm{ft}^{2} \\ & 1 \mathrm{ft}^{2}=144 \mathrm{in.}^{2}=0.0929034 \mathrm{~m}^{2} \end{aligned}$
Density	$1 \mathrm{~g} / \mathrm{cm}^{3}=1 \mathrm{~kg} / \mathrm{L}=1000 \mathrm{~kg} / \mathrm{m}^{3}$	$\begin{aligned} & 1 \mathrm{~g} / \mathrm{cm}^{3}=62.428 \mathrm{lbm} / \mathrm{ft}^{3}=0.036127 \mathrm{lbm} / \mathrm{in}^{3}{ }^{3} \\ & 1 \mathrm{lbm} / \mathrm{in} .^{3}=1728 \mathrm{lbm} / \mathrm{ft}^{3} \\ & 1 \mathrm{~kg} / \mathrm{m}^{3}=0.062428 \mathrm{lbm} / \mathrm{ft}^{3} \end{aligned}$
Energy, Heat, Work, Internal Energy, Enthalpy	$\begin{aligned} & 1 \mathrm{~kJ}=1000 \mathrm{~J}=1000 \mathrm{~N} \cdot \mathrm{~m}=1 \mathrm{kPa} \cdot \mathrm{~m}^{3} \\ & 1 \mathrm{~kJ} / \mathrm{kg}=1000 \mathrm{~m}^{2} / \mathrm{s}^{2} \\ & 1 \mathrm{kWh}=3600 \mathrm{~kJ} \\ & 1 \mathrm{~Wh}=3600 \mathrm{~J} \\ & 1 \mathrm{cal}=4.1868 \mathrm{~J} \\ & 1 \mathrm{Cal}=4.1868 \mathrm{~kJ} \end{aligned}$	$\begin{aligned} & 1 \mathrm{~kJ}=0.94782 \mathrm{Btu} \\ & 1 \mathrm{Btu}=1.055056 \mathrm{~kJ} \\ & =5.40395 \mathrm{psia} \cdot \mathrm{ft}^{3} \\ & =778.169 \mathrm{lbf} \cdot \mathrm{ft} \\ & 1 \mathrm{Btu} / \mathrm{lbm}=25.037 \mathrm{ft}^{2} / \mathrm{s}^{2} \\ & =2.326 \mathrm{~kJ} / \mathrm{kg} \\ & 1 \mathrm{~kJ} / \mathrm{kg}=0.430 \mathrm{Btu} / \mathrm{lbm} \\ & 1 \mathrm{kWh}=3412.14 \mathrm{Btu} \\ & 1 \text { therm }=10^{5} \mathrm{Btu}=1.055 \times 10^{5} \mathrm{~kJ} \\ & \text { (natural gas) } \end{aligned}$

CLASS ACTIVITY

Class Activity

- A piston-cylinder device initially contains $0.4 \mathrm{~m}^{3}$ of air at 100 kPa and $80^{\circ} \mathrm{C}$. The air is now compressed to $0.1 \mathrm{~m}^{3}$ in such a way that the temperature inside the cylinder remains constant. Determine the work done during this process

Class Activity

- Solution:

$$
P V=m R T_{0} \rightarrow P=\frac{C}{V}
$$

$$
W_{b}=\int_{1}^{2} P d V=\int_{1}^{2}\left(\frac{C}{V}\right) d V=C \int_{1}^{2}\left(\frac{d V}{V}\right)
$$

Class Activity

- Solution:

$$
W_{b}=(100 k P a)\left(0.4 m^{3}\right)\left(\operatorname{Ln}\left(\frac{0.1}{0.4}\right)\right)\left(\frac{1 k J}{1 k P a . m^{2}}\right)=-55.5 k J
$$

Moving Boundary Work

- During expansion or compression processes of gases and volume are often related in $\mathrm{PV}^{\mathrm{n}}=\mathrm{C}$ which is known as a Polytropic process

$$
P=C V^{-n}
$$

Moving Boundary Work

- Polytropic process

$$
P=C V^{-n}
$$

$$
W_{b}=\int_{1}^{2} P d V=\int_{1}^{2}\left(C V^{-n}\right) d V=\frac{C\left(\left(V^{-n+1}-V^{-n+1}\right)\right.}{(-n+1)}=\frac{P_{2} V_{2}-P_{1} V_{1}}{1-n}
$$

Moving Boundary Work

- Polytropic process

$$
\begin{aligned}
& C=P_{1} V_{1}^{n}=P_{2} V_{2}^{n} \\
& W_{b}=\frac{m R\left(T_{2}-T_{1}\right)}{1-n} \quad n \neq 1(k J)
\end{aligned}
$$

Moving Boundary Work

- For the case of $\mathrm{n}=1$

$$
W_{b}=\int_{1}^{2} P d V=\int_{1}^{2} C V^{-1} d V=P V \times \operatorname{Ln}\left(\frac{V_{2}}{V_{1}}\right)
$$

CLASS ACTIVITY

Class Activity

- A piston-cylinder device contains $0.05 \mathrm{~m}^{3}$ of a gas initially at 200 kPa . At this state, a linear spring that has a spring constant of $150 \mathrm{kN} / \mathrm{m}$ is touching the piston but exerting no force on it. Now heat is transferred to the gas, causing the piston to rise and to compress the spring until the volume inside the cylinder doubles. If the cross-sectional area of the piston is $0.25 \mathrm{~m}^{2}$, determine
a) The final pressure inside the cylinder
b) The total work done by the gas
c) The fraction of this work done against the spring to compress it

Class Activity

- Solution

Heat

$$
\begin{aligned}
& V_{2}=2 V_{1}=2\left(0.05 \mathrm{~m}^{3}\right)=0.1 \mathrm{~m}^{3} \\
& x=\frac{\Delta V}{A}=\frac{(0.1-0.05) \mathrm{m}^{3}}{0.25 \mathrm{~m}^{2}}=0.2 \mathrm{~m}
\end{aligned}
$$

Class Activity

- Solution

$$
\begin{aligned}
& F=k x=\left(150 \frac{\mathrm{kN}}{\mathrm{~m}}\right)(0.2 \mathrm{~m})=30 \mathrm{kN} \\
& P=\frac{F}{A}=\frac{30 \mathrm{kN}}{0.25 \mathrm{~m}^{2}}=120 \mathrm{kN} \\
& 200+120=320 \mathrm{kN}
\end{aligned}
$$

Class Activity

- Solution (b)

$$
W=\text { area }=\frac{(200+320) k P a}{2}\left[0.1^{2}-0.05^{2}\right]\left(\frac{1 k J}{1 k P a . m^{2}}\right)=13 \mathrm{~kJ}
$$

Class Activity

- Solution (c)

$$
W_{\text {spring }}=\frac{1}{2}[320-200] k P a\left(0.05 \mathrm{~m}^{3}\right)=3 \mathrm{~kJ}
$$

$$
W_{\text {spring }}=\frac{1}{2} k\left(x_{2}^{2}-x_{1}^{2}\right)=\frac{1}{2}(150)\left(0.2^{2}-0^{2}\right)=3 k J
$$

Moving Boundary Work

- Moving boundary work under different processes

Process	Moving boundary work
Constant volume	0
Constant pressure	$P_{0}\left(V_{2}-V_{1}\right)$
Isothermal	$P_{1} V_{1} \times \operatorname{Ln}\left(\frac{V_{2}}{V_{1}}\right)$
	$P_{1} V_{1} \times \operatorname{Ln}\left(\frac{P_{1}}{P_{2}}\right)$
	$m R T_{o} \times \operatorname{Ln}\left(\frac{V_{2}}{V_{1}}\right)$
Polytropic	$\frac{P_{2} V_{2}-P_{1} V_{1}}{1-n}$
	$\frac{m R\left(T_{2}-T_{1}\right)}{1-n}$

ENERGY BALANCE FOR CLOSED SYSTEMS

Energy Balance for Closed Systems

- The net change (increase or decrease) in the total energy of the system during a process is equal to the difference between the total energy entering and the total energy leaving the system during the process
(Total energy entering the system) - (Total energy leaving the system) $=$ (Change in the total energy of the sysem)

$$
E_{\text {in }}-E_{\text {out }}=\Delta E_{\text {system }}
$$

Energy Balance for Closed Systems

- Energy change of a system $\Delta E_{\text {system }}$

$$
\begin{aligned}
& \text { Energy change }=\text { Energy at final state }- \text { Energy at initial state } \\
& \qquad \Delta E_{\text {system }}=E_{\text {final }}-E_{\text {initial }}=E_{2}-E_{1}
\end{aligned}
$$

Energy is a property, and the value of a property does not change unless the state of the system changes

Energy Balance for Closed Systems

- We can sum the heat, work, and mass, and the heat transfer:

$$
E_{\text {in }}-E_{\text {out }}=\left(Q_{\text {in }}-Q_{\text {out }}\right)+\left(W_{\text {in }}-W_{\text {out }}\right)+=\Delta E_{\text {system }}
$$

Net energy transfer by heat, work

Change in internal, kinetic, potential, ..., energies

Energy Balance for Closed Systems

- We can sum the heat, work, and mass, and the heat transfer in the rate form:

Rate of change in internal, kinetic, potential, ..., energies

Energy Balance for Closed Systems

- The energy balance can be expressed on a per unit mass basis as

$$
e_{\text {in }}-e_{\text {out }}=\Delta e_{\text {system }}
$$

Energy Balance for Closed Systems

- For constant rates, we can write:

$$
Q=\dot{Q} \Delta t
$$

$$
W=\dot{W} \Delta t
$$

$$
E=\left(\frac{d E}{d t}\right) \Delta t
$$

Energy Balance for Closed Systems

- For a closed system undergoing a cycle, the initial and final states are identical:

$$
\begin{aligned}
& \Delta E=E_{\text {in }}-E_{\text {out }}=0 \rightarrow E_{\text {in }}=E_{\text {out }} \\
& W_{\text {net }, \text { out }}=Q_{\text {net }, \text { in }} \rightarrow \dot{W}_{\text {net }, \text { out }}=\dot{Q}_{\text {net }, \text { in }}
\end{aligned}
$$

Energy Balance for Closed Systems

- We can write:

