CAE 208 Thermal-Fluids Engineering I MMAE 320: Thermodynamics

Fall 2022

September 27, 2022 Properties of Pure Substances (III)

Built Environment Research

Advancing energy, environmental, and sustainability research within the built environment

www.built-envi.com

Dr. Mohammad Heidarinejad, Ph.D., P.E.

Civil, Architectural and Environmental Engineering
Illinois Institute of Technology

muh182@iit.edu

ANNOUNCEMENTS

Announcement

- Assignment 3 is graded
- Solution to assignment 3 is graded
- Problem solving video for assignment 3 is posted
- Do not forget about assignment 4 due Thursday

RECAP

We always look at the property diagrams in this course

 The saturated liquid states can be connected by a line called saturated liquid line and similarly the saturated vapor line

 The P-v diagram of a pure substance is very much like the T-v diagram but T = constant lines on this diagram have a downward trend

P-T diagram is known as the phase diagram

Table A-4 and Table A-5

TABLE A-4										
Saturated water—Temperature table										
Town	Sat.	Specific volume, m³/kg			Internal energy, kJ/kg			Enthalpy, kJ/kg		
Temp., T°C	press., $P_{\rm sat}$ kPa	Sat. liquid,	Sat. vapor, v _g	Sat. liquid, u_f	Evap., u_{fg}	Sat. vapor, u _g	Sat. liquid, h_f	Evap., h_{fg}	Sat. vapor, h_g	
0.01	0.6117	0.001000	206.00	0.000	2374.9	2374.9	0.001	2500.9	2500.9	
5	0.8725	0.001000	147.03	21.019	2360.8	2381.8	21.020	2489.1	2510.1	
10	1.2281	0.001000	106.32	42.020	2346.6	2388.7	42.022	2477.2	2519.2	
15	1.7057	0.001001	77.885	62.980	2332.5	2395.5	62.982	2465.4	2528.3	

Table A-4 and Table A-5

TABLE A-5											
Saturated water—F	aturated water—Pressure table										
Press.,	Sat.	Specific volume, m³/kg			Internal energy, kJ/kg			Enthalpy; kJ/kg			
P kPa	temp., $T_{\rm sat}$ °C	Sat. liquid, v_f	Sat. vapor, ^v g	Sat. liquid, u_f	Evap., u_{fg}	Sat. vapor, u_g	Sat. liquid, h_f	Evap., h_{fg}	Sat. vapor, $h_{\scriptscriptstyle g}$		
1.0	6.97	0.001000	129.19	29.302	2355.2	2384.5	29.303	2484.4	2513.7		
1.5	13.02	0.001001	87.964	54.686	2338.1	2392.8	54.688	2470.1	2524.7		
2.0	17.50	0.001001	66.990	73.431	2325.5	2398.9	73.433	2459.5	2532.9		
2.5	21.08	0.001002	54.242	88.422	2315.4	2403.8	88.424	2451.0	2539.4		
3.0	24.08	0.001003	45.654	100.98	2306.9	2407.9	100.98	2443.9	2544.8		
4.0	28.96	0.001004	34.791	121.39	2293.1	2414.5	121.39	2432.3	2553.7		

• Table A-6 for superheated

TABLE A-	-6								
Superheated water									
T °C	u m³/kg	и kJ/kg	h kJ/kg	s kJ/kg · K	u m³/kg	u kJ/kg	h kJ/kg	s kJ/kg ⋅ K	∪ m³/kg
		P = 0.01	MPa (45.81°C)*		P = 0.05	MPa (81.32°C	2)	
Sat.†	14.670	2437.2	2583.9	8.1488	3.2403	2483.2	2645.2	7.5931	1.6941
50	14.867	2443.3	2592.0	8.1741					
100	17.196	2515.5	2687.5	8.4489	3.4187	2511.5	2682.4	7.6953	1.6959
150	19.513	2587.9	2783.0	8.6893	3.8897	2585.7	2780.2	7.9413	1.9367
200	21.826	2661.4	2879.6	8.9049	4.3562	2660.0	2877.8	8.1592	2.1724
250	24.136	2736.1	2977.5	9.1015	4.8206	2735.1	2976.2	8.3568	2.4062
300	26.446	2812.3	3076.7	9.2827	5.2841	2811.6	3075.8	8.5387	2.6389
400	31.063	2969.3	3280.0	9.6094	6.2094	2968.9	3279.3	8.8659	3.1027

• Table A-7 for compressed liquid

TABLE	A-7								
Compressed liquid water									
T °C	υ m³/kg	u kJ/kg	<i>h</i> kJ/kg	s kJ/kg · K	υ m³/kg	u kJ/kg	<i>h</i> kJ/kg	s kJ/kg · K	υ m³/kg
		P = 5 M	Pa (263.94°C)			P = 10 M	IPa (311.00°C)		
Sat.	0.0012862	1148.1	1154.5	2.9207	0.0014522	1393.3	1407.9	3.3603	0.0016572
0	0.0009977	0.04	5.03	0.0001	0.0009952	0.12	10.07	0.0003	0.0009928
20	0.0009996	83.61	88.61	0.2954	0.0009973	83.31	93.28	0.2943	0.0009951
40	0.0010057	166.92	171.95	0.5705	0.0010035	166.33	176.37	0.5685	0.0010013
60	0.0010149	250.29	255.36	0.8287	0.0010127	249.43	259.55	0.8260	0.0010105
80	0.0010267	333.82	338.96	1.0723	0.0010244	332.69	342.94	1.0691	0.0010221
100	0.0010410	417.65	422.85	1.3034	0.0010385	416.23	426.62	1.2996	0.0010361
120	0.0010576	501.91	507.19	1.5236	0.0010549	500.18	510.73	1.5191	0.0010522
140	0.0010769	586.80	592.18	1.7344	0.0010738	584.72	595.45	1.7293	0.0010708
160	0.0010988	672.55	678.04	1.9374	0.0010954	670.06	681.01	1.9316	0.0010920

SATURATED LIQUID-VAPOR MIXTURE

 During a vaporization process, a substance exists as part liquid and part vapor

$$x = \frac{m_{vapor}}{m_{total}}$$

$$m_{total} = m_{liquid} + m_{vapor} = m_f + m_g$$

 During a vaporization process, a substance exists as part liquid and part vapor

We can write the quality property as:

$$V = V_f + V_g$$

$$m_t = m_f + m_g$$

$$v_{avg} = v_f + x v_{fg}$$

$$x = \frac{v_{avg} - v_f}{v_{fg}}$$

We can write:

$$v_{avg} = v_f + x v_{fg}$$

$$u_{avg} = u_f + uv_{fg}$$

$$h_{avg} = h_f + hv_{fg}$$

CLASS ACTIVITY

 A rigid tank contains 10 kg of water at 90 °C. If 8 kg of the water is in the liquid form and the rest is in the vapor form, determine (a) the pressure in the tank and (b) the volume of the tank

• Solution Part (a):

TABLE A—4										
Saturated water—Temperature table										
Tomas	Sat.	Specific volume, m³/kg			Internal energy, kJ/kg			Enthalpy, kJ/kg		
Temp., T°C	press., $P_{\rm sat}$ kPa	Sat. liquid,	Sat. vapor, ^v g	Sat. liquid, u _f	Evap., u_{fg}	Sat. vapor, u _g	Sat. liquid, h_f	Evap., h_{fg}	Sat. vapor, h_g	
65	25.043	0.001020	6.1935	272.09	2190.3	2462.4	272.12	2345.4	2617.5	
70	31.202	0.001023	5.0396	293.04	2175.8	2468.9	293.07	2333.0	2626.1	
75	38.597	0.001026	4.1291	313.99	2161.3	2475.3	314.03	2320.6	2634.6	
80	47.416	0.001029	3.4053	334.97	2146.6	2481.6	335.02	2308.0	2643.0	
85	57.868	0.001032	2.8261	355.96	2131.9	2487.8	356.02	2295.3	2651.4	
90	70.183	0.001036	2.3593	376.97	2117.0	2494.0	377.04	2282.5	2659.6	
95	84.609	0.001040	1.9808	398.00	2102.0	2500.1	³ <i>T</i> , °C↑			

Solution Part (b) - Solution 1:

$$V = V_f + V_g = m_f v_f + m_g v_g$$

$$V = (8 kg) \left(0.001036 \frac{m^3}{kg} \right) + (2 kg) \left(2.3593 \frac{m^3}{kg} \right) = 4.73 m^3$$

$$V = 4.73 \ m^3$$

Solution Part (b) – Solution 2:

$$x = \frac{m_g}{m_t} = \frac{2}{2+8} = 0.2$$

$$v = v_f + x v_{fg} = \left(0.001036 \frac{m^3}{kg}\right) + (0.2)\left(2.3593 - 0.001036 \frac{m^3}{kg}\right) = 0.473 \frac{m^3}{kg}$$

$$V = mv = (10 \ kg) \left(0.473 \frac{m^3}{kg} \right) = 4.73 \ m^3$$

SUPERHEATED VAPOR

Superheated Vapor

 Compared to the saturated vapor, superheated vapor is characterized by

```
Lower pressures (P < P_{\text{sat}} at a given T)

Higher temperatures (T > T_{\text{sat}} at a given P)

Higher specific volumes (U > U_{\text{g}} at a given P or T)

Higher internal energies (u > u_{\text{g}} at a given P or T)

Higher enthalpies (h > h_g at a given P or T)
```

CLASS ACTIVITY

One pound-mass of water fills a 2.29 ft³ rigid container at an initial pressure of 150 psia. The container is then cooled to 100 °F. Determine the initial temperature and final pressure of the water.

TABLE A	–5E										
Saturated	Saturated water—Pressure table										
Press., P	Sat.		: volume, /lbm	Interno	Internal energy,Bt						
psia	temp., $T_{\rm sat}$ °F	Sat. liquid, V_f	Sat. vapor, v_g	Sat. liquid, u_f	Evap., u_{fg}						
1	101.69	0.01614	333.49	69.72	973.99						
2	126.02	0.01623	173.71	94.02	957.45						
3	141.41	0.01630	118.70	109.39	946.90						
4	152.91	0.01636	90.629	120.89	938.97						
5	162.18	0.01641	73.525	130.17	932.53						
190	377.52	0.01833	2.4040	350.24	763.31						
200	381.80	0.01839	2.2882	354.78	759.32						
250	400.97	0.01865	1.8440	375.23	741.02						
300	417.35	0.01890	1.5435	392.89	724.77						
350	431.74	0.01912	1.3263	408.55	709.98						

$$v_i = \frac{V}{m} = \frac{2.29 ft^3}{1 lbm} = 2.29 \frac{ft^3}{lbm}$$

$$v_i > v_g$$

TABL	TABLE A-6E								
Supe	Superheated water								
T°F	υ ft ³ /lbm	u Btu/lbm	h Btu/lbm	s Btu/lbm · R					
		P = 250 1	osia (400.	97°F)					
Sat.	1.8440	1116.3	1201.6	1.5270					
450	2.0027	1141.3	1234.0	1.5636					
500	2.1506	1164.1	1263.6	1.5953					
550	2.2910	1185.6	1291.5	1.6237					
600	2.4264	1206.3	1318.6	1.6499					
650	2.5586	1226.8	1345.1	1.6743					

$$\begin{cases} P_1 = 250 \ psia \\ v_1 = 2.29 \ ft^3/lbm \end{cases}$$

$$T_2 = 100 \, {}^{\circ}F$$

$$v_2 = v_1 = 2.29 \, ft^3 / lbm$$

$$P_2 = P_{sat @ 100 F} = 20.9505 psia$$

CLASS ACTIVITY

 Determine temperature of water at a state of P = 0.5 MPa and h = 2,890 kJ/kg

TABLE A-5										
Saturated water—Pressure table										
Dross	Sat.	-	cific volume, m ³ /kg	,	Internal energy, kJ/kg			<i>Enthalpy,</i> kJ/kg		
Press., PkPa	temp., $T_{\rm sat}$ °C	Sat. liquid, U_f	Sat. vapor, ν_g	Sat. liquid, u _f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h_f	Evap., h_{fg}	Sat. vapor, h_g	
325	136.27	0.001076	0.56199	572.84	1973.1	2545.9	573.19	2155.4	2728.6	
350	138.86	0.001079	0.52422	583.89	1964.6	2548.5	584.26	2147.7	2732.0	
375	141.30	0.001081	0.49133	594.32	1956.6	2550.9	594.73	2140.4	2735.1	
400	143.61	0.001084	0.46242	604.22	1948.9	2553.1	604.66	2133.4	2738.1	
450	147.90	0.001088	0.41392	622.65	1934.5	2557.1	623.14	2120.3	2743.4	
500	151.83	0.001093	0.37483	639.54	1921.2	2560.7	640.09	2108.0	2748.1	

TABLE	TABLE A-6									
Superheated water										
T °C	U3 //	<i>u</i>	h	S 1-1/1 V						
	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K						
	I	P = 0.50 M	Pa (151.8	3°C)						
Sat.	0.37483	2560.7	2748.1	6.8207						
200	0.42503	2643.3	2855.8	7.0610						
250	0.47443	2723.8	2961.0	7.2725						
300	0.52261	2803.3	3064.6	7.4614						
350	0.57015	2883.0	3168.1	7.6346						
400	0.61731	2963.7	3272.4	7.7956						
500	0.71095	3129.0	3484.5	8.0893						
600	0.80409	3300.4	3702.5	8.3544						

$$T = 216.3 \, ^{\circ}C$$

COMPRESSED LIQUID

Compressed Liquid

- Compressed liquid tables are not as commonly available (Table A-7)
- In the absence of compressed liquid data, a general approximation is to treat compressed liquid as saturated liquid at the given temperature

Compressed Liquid

At low to moderate pressures and temperatures, we can say:

$$h \sim h_{f @ T} + v_{f @ T}(P - P_{sat @ T})$$

Compressed Liquid

In general, a compressed liquid is characterized by:

```
Higher pressures (P > P_{\text{sat}}) at a given T)
Lower temperatures (T < T_{\text{sat}}) at a given P)
Lower specific volumes (U < U_f) at a given P or T)
Lower internal energies (u < u_f) at a given P or T)
Lower enthalpies (h < h_f) at a given P or T)
```

CLASS ACTIVITY

 Determine the internal energy of compressed liquid water at 80 °C and 5 MPa, using (a) data from compressed liquid table and (b) saturated liquid data. What is the error involved in the second case

TABLE A-7									
Compressed liquid water									
T	U	и	h	S					
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K					
	P = 5 MPa (263.94°C)								
Sat.	0.0012862	1148.1	1154.5	2.9207					
0	0.0009977	0.04	5.03	0.0001					
20	0.0009996	83.61	88.61	0.2954					
40	0.0010057	166.92	171.95	0.5705					
60	0.0010149	250.29	255.36	0.8287					
80	0.0010267	333.82	338.96	1.0723					
100	0.0010410	417.65	422.85	1.3034					

Saturated water—Temperature table										
Temp., T°C	Sat.	<i>Specific volume,</i> m³/kg		Int	Internal energy, kJ/kg			Enthalpy, kJ/kg		
	press., P _{sat} kPa	Sat. liquid, v_f	Sat. vapor, υ_g	Sat. liquid, u _f	Evap., u_{fg}	Sat. vapor, u _g	Sat. liquid, h_f	Evap., h_{fg}	Sat. vapor, h_g	
0.01	0.6117	0.001000	206.00	0.000	2374.9	2374.9	0.001	2500.9	2500.9	
5	0.8725	0.001000	147.03	21.019	2360.8	2381.8	21.020	2489.1	2510.1	
10	1.2281	0.001000	106.32	42.020	2346.6	2388.7	42.022	2477.2	2519.2	
15	1.7057	0.001001	77.885	62.980	2332.5	2395.5	62.982	2465.4	2528.3	
20	2.3392	0.001002	57.762	83.913	2318.4	2402.3	83.915	2453.5	2537.4	
25	3.1698	0.001003	43.340	104.83	2304.3	2409.1	104.83	2441.7	2546.5	
30	4.2469	0.001004	32.879	125.73	2290.2	2415.9	125.74	2429.8	2555.6	
35	5.6291	0.001006	25.205	146.63	2276.0	2422.7	146.64	2417.9	2564.6	
40	7.3851	0.001008	19.515	167.53	2261.9	2429.4	167.53	2406.0	2573.5	
45	9.5953	0.001010	15.251	188.43	2247.7	2436.1	188.44	2394.0	2582.4	
50	12.352	0.001012	12.026	209.33	2233.4	2442.7	209.34	2382.0	2591.3	
55	15.763	0.001015	9.5639	230.24	2219.1	2449.3	230.26	2369.8	2600.1	
60	19.947	0.001017	7.6670	251.16	2204.7	2455.9	251.18	2357.7	2608.8	
65	25.043	0.001020	6.1935	272.09	2190.3	2462.4	272.12	2345.4	2617.5	
70	31.202	0.001023	5.0396	293.04	2175.8	2468.9	293.07	2333.0	2626.1	
75	38.597	0.001026	4.1291	313.99	2161.3	2475.3	314.03	2320.6	2634.6	
80	47.416	0.001029	3.4053	334.97	2146.6	2481.6	335.02	2308.0	2643.0	

$$Error = \frac{334.94 - 333.82}{333.82} \times 100 = 0.34 \%$$

THE IDEAL-GAS EQUATION OF STATE

 Property tables provide very accurate information about the properties, but they are

☐ Bulky

☐ Vulnerable to typographical errors

It would be nice to have a simple relationship

- Any equation that relates the pressure, temperature, and specific volume of a substance is called an equation of state (there simple and complex ones)
- We used vapor and gas often interchangeably in the first three chapters

 The simplest and best-known equation of state for substances in the gas phase is the ideal-gas equation of state

$$P = R(\frac{T}{v})$$

$$Pv = RT$$

Ideal—gas equation of state

We can define gas constant for each gas:

$$R = \frac{R_u}{M} \qquad \qquad (\frac{kJ}{kg.K} \text{ or } \frac{kPa.m^3}{kg.K})$$

R_u is the universal gas constant

$$R_{u} = \begin{cases} 8.31447 \text{ kJ/kmol} \cdot \text{K} \\ 8.31447 \text{ kPa} \cdot \text{m}^{3}/\text{kmol} \cdot \text{K} \\ 0.0831447 \text{ bar} \cdot \text{m}^{3}/\text{kmol} \cdot \text{K} \\ 1.98588 \text{ Btu/lbmol} \cdot \text{R} \\ 10.7316 \text{ psia} \cdot \text{ft}^{3}/\text{lbmol} \cdot \text{R} \\ 1545.37 \text{ ft} \cdot \text{lbf/lbmol} \cdot \text{R} \end{cases}$$

Examples of gas constant for a few known gases:

M is the molar mass

- ☐ The mass of one mole of a substance in grams or the mas of kmol in kilograms
- ☐ Or, the mass of 1 lbmol in lbm

(e.g., for Nitrogen we have N = 28 kg/kmol = 28 lbm/lbmol)

Several variations of the ideal-gas equation of state

$$N=\frac{m}{M}$$

TABLE A-1									
Molar mass, gas constant, and critical-point properties									
Substance	Formula	Molar mass, M kg/kmol	Gas constant, R kJ/kg · K*	Critical-p					
Substance	rominia	Word mass, W kg/kmoi	Gas constant, A KJ/Kg · K	Temperature, K	Pressur				
Air	-	28.97	0.2870	132.5	3.				
Ammonia	NH_3	17.03	0.4882	405.5	11.				
Argon	Ar	39.948	0.2081	151	4.				
Benzene	C_6H_6	78.115	0.1064	562	4.				
Bromine	Br_2	159.808	0.0520	584	10.				
n-Butane	C_4H_{10}	58.124	0.1430	425.2	3.				
Carbon dioxide	CO_2	44.01	0.1889	304.2	7.				
Carbon monoxide	CO	28.011	0.2968	133	3.				
Carbon tetrachloride	CCl ₄	153.82	0.05405	556.4	4.				
Chlorine	Cl ₂	70.906	0.1173	417	7.				
Chloroform	CHCl ₃	119.38	0.06964	536.6	5.				
Dichlorodifluoromethane (R-12)	CCl_2F_2	120.91	0.06876	384.7	4.				

Several variations of the ideal-gas equation of state

$$v = \frac{V}{m}$$

$$P\left(\frac{V}{m}\right) = RT \to PV = mRT$$

Several variations of the ideal-gas equation of state

$$N = \frac{m}{M}$$

$$PV = (NM)RT$$

$$PV = NR_uT$$

$$P\left(\frac{V}{N}\right) = R_u T \quad \to P\bar{V} = R_u T$$

Properties per unit mole are:

ia

 By writing the equation twice for a fixed mass and simplifying we can write:

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

CLASS ACTIVITY

 The gage pressure of an automobile tire is measure to be 210 kPa before a trip and 220 kPa after the trip at a location where the atmospheric pressure is 95 kPa. Assuming the volume of the tire remains constant and the air temperature before the trip is 25 °C, determine air temperature after the trip.

Solution:

$$P_1 = P_{gage,1} + P_{atm} = 210 + 95 = 305 \, kPa$$

$$P_2 = P_{gage,2} + P_{atm} = 220 + 95 = 315 \, kPa$$

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} = \frac{315 \, kPa}{305 \, kPa} (25 + 273.15 \, K) = 307.8 \, K = 34.8 \, ^{\circ}C$$

Is Water an Ideal Gas?

FIGURE 4-46

Percentage of error ($[|v_{table} - v_{ideal}| / v_{table}] \times 100$) involved in assuming steam to be an ideal gas, and the region where steam can be treated as an ideal gas with lespercent error.

COMPRESSIBILITY FACTOR – A MEASURE OF OF DEVIATION FROM IDEAL-GAS BEHAVIOR

FIGURE 4-46

 Z factor for all gases is approximately the same at the same reduced temperature and pressure due to the principle of corresponding states

$$P_R = \frac{P}{P_{cr}}$$

$$T_R = \frac{T}{T_{Cr}}$$

Generalized compressibility chart

A few observations:

CLASS ACTIVITY

Determine specific volume of refrigeratnt-134a at 1 MPa and 50 °C using (a) the ideal-gas equation of state and (b) the generalized compressibility chart. Compare the values obtained to the actual value of 0.021796 m³/kg and determine the error involved in each case.

Solution (a):

TABLE A-1								
Molar mass, gas constant, and critic								
Color	Formula N	Molar mass, M kg/kmol	Gas constant, R kJ/kg · K*		Critical-point properties			
Substance	rormuia N	Total mass, M kg/kmoi	Gas Constant, R KJ/Kg · K		Temperature, K	Pressure, MPa	Volume, m ³ /kmol	
Propane	C_3H_8	44.097	0.1885		370	4.26	0.1998	
Propylene	C_3H_6	42.081	0.1976		365	4.62	0.1810	
Sulfur dioxide	SO ₂	64.063	0.1298		430.7	7.88	0.1217	
Tetrafluoroethane (R-134a)	CF ₃ CH ₂ F	102.03	0.08149		374.2	4.059	0.1993	
Trichlorofluoromethane (R-11)	CCl ₃ F	137.37	0.06052		471.2	4.38	0.2478	
Water	H_2O	18.015	0.4615		647.1	22.06	0.0560	
Xenon	Xe	131.30	0.06332		289.8	5.88	0.1186	

$$v = \frac{RT}{P} = \frac{\left(0.0815 \frac{kJ}{kg.K}\right) (50 + 273.15 K)}{1000 kPa} = 0.026325 \frac{m^3}{kg}$$

$$Error = \frac{0.026325 - 0.021796}{0.021796} = 0.208$$

Solution (b):

$$P_R = \frac{P}{P_{cr}} = \frac{1 MPa}{4.059 MPa} = 0.246$$

$$Z = 0.84$$

$$T_R = \frac{T}{T_{cr}} = \frac{323 \, K}{374.2 \, K} = 0.863$$

$$v_{actual} = Zv_{ideal} = (0.84) \left(0.026325 \frac{m^3}{kg}\right) = 0.022113 \frac{m^3}{kg}$$

$$Error = \frac{0.022113 - 0.021796}{0.021796} \sim 0.02$$