CAE 208 Thermal-Fluids Engineering I MMAE 320: Thermodynamics

Fall 2022

September 27, 2022 Properties of Pure Substances (III)

Built

Environment
Research
@ IIT

Advancing energy, environmental, and
sustainability research within the built environment
www.built-envi.com
Dr. Mohammad Heidarinejad, Ph.D., P.E. Civil, Architectural and Environmental Engineering Illinois Institute of Technology muh182@iit.edu

ANNOUNCEMENTS

Announcement

- Assignment 3 is graded
- Solution to assignment 3 is graded
- Problem solving video for assignment 3 is posted
- Do not forget about assignment 4 due Thursday

RECAP

Recap

- We always look at the property diagrams in this course

Recap

- The saturated liquid states can be connected by a line called saturated liquid line and similarly the saturated vapor line

Recap

- The P-v diagram of a pure substance is very much like the $\mathrm{T}-\mathrm{v}$ diagram but $\mathrm{T}=$ constant lines on this diagram have a downward trend

Recap

- P-T diagram is known as the phase diagram

Recap

- Table A-4 and Table A-5

TABLE A-4									
Saturated water-Temperature table									
Temp., $T^{\circ} \mathrm{C}$	Sat. press., $P_{\text {sat }} \mathrm{kPa}$	Specific volume,$\mathrm{m}^{3} / \mathrm{kg}$		Internal energy, kJ/kg			Enthalpy, kJ/kg		
		Sat. liquid, v_{f}	Sat. vapor, v_{g}	Sat. liquid. u_{f}	$\begin{aligned} & \text { Evap., } \\ & u_{f g} \end{aligned}$	Sat. vapor, u_{g}	Sat. liquid. h_{f}	$\begin{aligned} & \text { Evap., } \\ & h_{f g} \end{aligned}$	Sat. vapor, h_{g}
0.01	0.6117	0.001000	206.00	0.000	2374.9	2374.9	0.001	2500.9	2500.9
5	0.8725	0.001000	147.03	21.019	2360.8	2381.8	21.020	2489.1	2510.1
10	1.2281	0.001000	106.32	42.020	2346.6	2388.7	42.022	2477.2	2519.2
15	1.7057	0.001001	77.885	62.980	2332.5	2395.5	62.982	2465.4	2528.3

Recap

- Table A-4 and Table A-5

TABLE A-5									
Saturated water-Pressure table									
Press.,$P \mathrm{kPa}$	Sat. temp., $T_{\text {sat }}{ }^{\circ} \mathrm{C}$	Specific volume,$\mathrm{m}^{3} / \mathrm{kg}$		Internal energy, kJ/kg			Enthalpy, $\mathrm{kJ} / \mathrm{kg}$		
		Sat. liquid, v_{f}	Sat. vapor, v_{g}	Sat. liquid. u_{f}	Evap., $u_{f g}$	Sat. vapor, u_{s}	Sat. liquid. h_{f}	Evap., $h_{f g}$	Sat. vapor, h_{g}
1.0	6.97	0.001000	129.19	29.302	2355.2	2384.5	29.303	2484.4	2513.7
1.5	13.02	0.001001	87.964	54.686	2338.1	2392.8	54.688	2470.1	2524.7
2.0	17.50	0.001001	66.990	73.431	2325.5	2398.9	73.433	2459.5	2532.9
2.5	21.08	0.001002	54.242	88.422	2315.4	2403.8	88.424	2451.0	2539.4
3.0	24.08	0.001003	45.654	100.98	2306.9	2407.9	100.98	2443.9	2544.8
4.0	28.96	0.001004	34.791	121.39	2293.1	2414.5	121.39	2432.3	2553.7

Recap

- Table A-6 for superheated

TABLE A-6									
Superheated water									
$\begin{aligned} & T \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{m}^{3} / \mathrm{kg}$	u $\mathrm{kJ} / \mathrm{kg}$	h kJ/kg	$\begin{aligned} & s \\ & \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \end{aligned}$	$\mathrm{m}^{3} / \mathrm{kg}$	u kJ/kg	h $\mathrm{kJ} / \mathrm{kg}$	$\begin{aligned} & s \\ & \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \end{aligned}$	u $\mathrm{m}^{3} / \mathrm{kg}$
$P=0.01 \mathrm{MPa}\left(45.81^{\circ} \mathrm{C}\right)^{*}$					$P=0.05 \mathrm{MPa}\left(81.32^{\circ} \mathrm{C}\right)$				
Sat. ${ }^{\dagger}$	14.670	2437.2	2583.9	8.1488	3.2403	2483.2	2645.2	7.5931	1.6941
50	14.867	2443.3	2592.0	8.1741					
100	17.196	2515.5	2687.5	8.4489	3.4187	2511.5	2682.4	7.6953	1.6959
150	19.513	2587.9	2783.0	8.6893	3.8897	2585.7	2780.2	7.9413	1.9367
200	21.826	2661.4	2879.6	8.9049	4.3562	2660.0	2877.8	8.1592	2.1724
250	24.136	2736.1	2977.5	9.1015	4.8206	2735.1	2976.2	8.3568	2.4062
300	26.446	2812.3	3076.7	9.2827	5.2841	2811.6	3075.8	8.5387	2.6389
400	31.063	2969.3	3280.0	9.6094	6.2094	2968.9	3279.3	8.8659	3.1027

Recap

- Table A-7 for compressed liquid

TABLE A-7									
Compressed liquid water									
$\begin{aligned} & T \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{m}^{3} / \mathrm{kg}$	$\mathrm{kJ} / \mathrm{kg}$	h kJ/kg	$\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{~K}$	$\mathrm{m}^{3} / \mathrm{kg}$	$\begin{aligned} & u \\ & \mathrm{~kJ} / \mathrm{kg} \end{aligned}$	h $\mathrm{kJ} / \mathrm{kg}$	$\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{~K}$	$\mathrm{m}^{3} / \mathrm{kg}$
	$P=5 \mathrm{MPa}\left(263.94^{\circ} \mathrm{C}\right)$				$P=10 \mathrm{MPa}\left(311.00^{\circ} \mathrm{C}\right)$				
Sat.	0.0012862	1148.1	1154.5	2.9207	0.0014522	1393.3	1407.9	3.3603	0.0016572
0	0.0009977	0.04	5.03	0.0001	0.0009952	0.12	10.07	0.0003	0.0009928
20	0.0009996	83.61	88.61	0.2954	0.0009973	83.31	93.28	0.2943	0.0009951
40	0.0010057	166.92	171.95	0.5705	0.0010035	166.33	176.37	0.5685	0.0010013
60	0.0010149	250.29	255.36	0.8287	0.0010127	249.43	259.55	0.8260	0.0010105
80	0.0010267	333.82	338.96	1.0723	0.0010244	332.69	342.94	1.0691	0.0010221
100	0.0010410	417.65	422.85	1.3034	0.0010385	416.23	426.62	1.2996	0.0010361
120	0.0010576	501.91	507.19	1.5236	0.0010549	500.18	510.73	1.5191	0.0010522
140	0.0010769	586.80	592.18	1.7344	0.0010738	584.72	595.45	1.7293	0.0010708
160	0.0010988	672.55	678.04	1.9374	0.0010954	670.06	681.01	1.9316	0.0010920

SATURATED LIQUID-VAPOR MIXTURE

Saturated Liquid-Vapor Mixture

- During a vaporization process, a substance exists as part liquid and part vapor

$$
\begin{gathered}
x=\frac{m_{\text {vapor }}}{m_{\text {total }}} \\
m_{\text {total }}=m_{\text {liquid }}+m_{\text {vapor }}=m_{f}+m_{g}
\end{gathered}
$$

Saturated Liquid-Vapor Mixture

- During a vaporization process, a substance exists as part liquid and part vapor

Saturated Liquid-Vapor Mixture

- We can write the quality property as:

$$
\begin{aligned}
& V=V_{f}+V_{g} \\
& m_{t}=m_{f}+m_{g} \\
& v_{a v g}=v_{f}+x v_{f g} \\
& x=\frac{v_{a v g}-v_{f}}{v_{f g}}
\end{aligned}
$$

Saturated Liquid-Vapor Mixture

- We can write:

$$
\begin{aligned}
& v_{a v g}=v_{f}+x v_{f g} \\
& u_{a v g}=u_{f}+u v_{f g} \\
& h_{a v g}=h_{f}+h v_{f g}
\end{aligned}
$$

CLASS ACTIVITY

Class Activity

- A rigid tank contains 10 kg of water at $90^{\circ} \mathrm{C}$. If 8 kg of the water is in the liquid form and the rest is in the vapor form, determine (a) the pressure in the tank and (b) the volume of the tank

Class Activity

- Solution Part (a):

Class Activity

- Solution Part (b) - Solution 1:

$$
\begin{gathered}
V=V_{f}+V_{g}=m_{f} v_{f}+m_{g} v_{g} \\
V=(8 \mathrm{~kg})\left(0.001036 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}\right)+(2 \mathrm{~kg})\left(2.3593 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}\right)=4.73 \mathrm{~m}^{3} \\
V=4.73 \mathrm{~m}^{3}
\end{gathered}
$$

Class Activity

- Solution Part (b) - Solution 2:

$$
\begin{aligned}
& x=\frac{m_{g}}{m_{t}}=\frac{2}{2+8}=0.2 \\
& v=v_{f}+x v_{f g}=\left(0.001036 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}\right)+(0.2)\left(2.3593-0.001036 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}\right)=0.473 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} \\
& V=m v=(10 \mathrm{~kg})\left(0.473 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}\right)=4.73 \mathrm{~m}^{3}
\end{aligned}
$$

SUPERHEATED VAPOR

Superheated Vapor

- Compared to the saturated vapor, superheated vapor is characterized by

```
Lower pressures (P<P变相 at a given T)
Higher temperatures (T> Tsat at a given P)
Higher specific volumes ( }v>\mp@subsup{v}{\textrm{g}}{}\mathrm{ at a given P}\mathrm{ or T)
Higher internal energies ( }u>
Higher enthalpies (h>\mp@subsup{h}{g}{}\mathrm{ at a given }P\mathrm{ or T)}
```


CLASS ACTIVITY

Class Activity

- One pound-mass of water fills a $2.29 \mathrm{ft}^{3}$ rigid container at an initial pressure of 150 psia. The container is then cooled to $100^{\circ} \mathrm{F}$. Determine the initial temperature and final pressure of the water.

Class Activity

- Solution:

TABLE A-5E					
Saturated water-Pressure table					
Press., P psia	Sat. temp., $T_{\text {sat }}{ }^{\circ} \mathrm{F}$	Specific volume, $\mathrm{ft}^{3} / \mathrm{lbm}$		Internal energy, Bt	
		Sat. liquid, v_{f}	Sat. vapor, U_{g}	Sat. liquid, u_{f}	Evap., $u_{f g}$
1	101.69	0.01614	333.49	69.72	973.99
2	126.02	0.01623	173.71	94.02	957.45
3	141.41	0.01630	118.70	109.39	946.90
4	152.91	0.01636	90.629	120.89	938.97
5	162.18	0.01641	73.525	130.17	932.53
190	377.52	0.01833	2.4040	350.24	763.31
200	381.80	0.01839	2.2882	354.78	759.32
250	400.97	0.01865	1.8440	375.23	741.02
300	417.35	0.01890	1.5435	392.89	724.77
350	431.74	0.01912	1.3263	408.55	709.98

Class Activity

- Solution:

TABLE A-6E				
Superheated water				
$T^{\circ} \mathrm{F}$	$\mathrm{ft}^{3} / \mathrm{lbm}$	u Btu/lbm	h Btu/lbm	$\mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{R}$
	$P=250 \mathrm{psia}\left(400.97^{\circ} \mathrm{F}\right)$			
Sat.	1.8440	1116.3	1201.6	1.5270
450	2.0027	1141.3	1234.0	1.5636
500	2.1506	1164.1	1263.6	1.5953
550	2.2910	1185.6	1291.5	1.6237
600	2.4264	1206.3	1318.6	1.6499
650	2.5586	1226.8	1345.1	1.6743

$$
\left\{\begin{array}{c}
P_{1}=250 \mathrm{psia} \\
v_{1}=2.29 \mathrm{ft}^{3} / l \mathrm{lbm}
\end{array}\right.
$$

Class Activity

- Solution:

$$
\begin{aligned}
& T_{2}=100^{\circ} \mathrm{F} \\
& v_{2}=v_{1}=2.29 \mathrm{ft}^{3} / \mathrm{lbm}
\end{aligned}
$$

$$
P_{2}=P_{\text {sat @ } 100 F}=20.9505 \text { psia }
$$

CLASS ACTIVITY

Class Activity

- Determine temperature of water at a state of $P=0.5 \mathrm{MPa}$ and $\mathrm{h}=2,890 \mathrm{~kJ} / \mathrm{kg}$

Class Activity

- Solution:

TABLE A-5									
Saturated water-Pressure table									
	Sat.	Specific volume, $\mathrm{m}^{3} / \mathrm{kg}$		Internal energy, kJ/kg			Enthalpy, $\mathrm{kJ} / \mathrm{kg}$		
$P \mathrm{kPa}$	$\begin{aligned} & \text { temp., } \\ & T_{\text {sat }}{ }^{\circ} \mathrm{C} \end{aligned}$	Sat. liquid, v_{f}	Sat. vapor, U_{g}	Sat liquid, u_{f}	$\begin{aligned} & \text { Evap., } \\ & u_{f g} \end{aligned}$	Sat. vapor, u_{g}	Sat. liquid, h_{f}	$\begin{aligned} & \text { Evap., } \\ & h_{f g} \end{aligned}$	Sat vapor, h_{g}
325	136.27	0.001076	0.56199	572.84	1973.1	2545.9	573.19	2155.4	2728.6
350	138.86	0.001079	0.52422	583.89	1964.6	2548.5	584.26	2147.7	2732.0
375	141.30	0.001081	0.49133	594.32	1956.6	2550.9	594.73	2140.4	2735.1
400	143.61	0.001084	0.46242	604.22	1948.9	2553.1	604.66	2133.4	2738.1
450	147.90	0.001088	0.41392	622.65	1934.5	2557.1	623.14	2120.3	2743.4
500	151.83	0.001093	0.37483	639.54	1921.2	2560.7	640.09	2108.0	2748.1

Class Activity

- Solution:

TABLE A-6				
Superheated water				
T	u	u	h	s
${ }^{\circ} \mathrm{C}$	$\mathrm{m}^{3} / \mathrm{kg}$	kJ/kg	kJ/kg	$\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}$
Sat.	$P=0.50 \mathrm{MPa}\left(151.83^{\circ} \mathrm{C}\right)$			
	0.37483	2560.7	2748.1	6.8207
200	0.42503	2643.3	2855.8	7.0610
250	0.47443	2723.8	2961.0	7.2725
300	0.52261	2803.3	3064.6	7.4614
350	0.57015	2883.0	3168.1	7.6346
400	0.61731	2963.7	3272.4	7.7956
500	0.71095	3129.0	3484.5	8.0893
600	0.80409	3300.4	3702.5	8.3544

$$
T=216.3^{\circ} \mathrm{C}
$$

COMPRESSED LIQUID

Compressed Liquid

- Compressed liquid tables are not as commonly available (Table A-7)
- In the absence of compressed liquid data, a general approximation is to treat compressed liquid as saturated liquid at the given temperature

Compressed Liquid

- At low to moderate pressures and temperatures, we can say:

$$
h \sim h_{f @ T}+v_{f @ T}\left(P-P_{s a t @ T}\right)
$$

Compressed Liquid

- In general, a compressed liquid is characterized by:

Higher pressures $\left(P>P_{\text {sat }}\right.$ at a given $\left.T\right)$
Lower temperatures ($T<T_{\text {sat }}$ at a given P)
Lower specific volumes $\left(U<U_{f}\right.$ at a given P or $\left.T\right)$
Lower internal energies $\left(u<u_{\mathrm{f}}\right.$ at a given P or $\left.T\right)$
Lower enthalpies ($h<h_{f}$ at a given P or T)

CLASS ACTIVITY

Class Activity

- Determine the internal energy of compressed liquid water at $80^{\circ} \mathrm{C}$ and 5 MPa , using (a) data from compressed liquid table and (b) saturated liquid data. What is the error involved in the second case

Class Activity

- Solution:

Class Activity

- Solution:

TABLE A-7				
Compressed liquid water				
T	u	u	h	s
${ }^{\circ} \mathrm{C}$	$\mathrm{m}^{3} / \mathrm{kg}$	kJ/kg	kJ/kg	$\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}$
$P=5 \mathrm{MPa}\left(263.94^{\circ} \mathrm{C}\right)$				
Sat.	0.0012862	1148.1	1154.5	2.9207
0	0.0009977	0.04	5.03	0.0001
20	0.0009996	83.61	88.61	0.2954
40	0.0010057	166.92	171.95	0.5705
60	0.0010149	250.29	255.36	0.8287
80	0.0010267	333.82	338.96	1.0723
100	0.0010410	417.65	422.85	1.3034

Class Activity

- Solution:

TABLE A-4									
Saturated water-Temperature table									
Temp.,$T^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Sat. } \\ & \text { press., } \\ & P_{\text {sat }} \mathrm{kPa} \end{aligned}$	Specific volume, $\mathrm{m}^{3} / \mathrm{kg}$		Internal energy kJ/kg			Enthalpy, $\mathrm{kJ} / \mathrm{kg}$		
		Sat. liquid, v_{f}	Sat. vapor, U_{g}	Sat. liquid, u_{f}	Evap., $u_{f g}$	Sat. vapor, u_{g}	Sat. liquid, h_{f}	Evap., $h_{f g}$	Sat. vapor, h_{g}
0.01	0.6117	0.001000	206.00	0.000	2374.9	2374.9	0.001	2500.9	2500.9
5	0.8725	0.001000	147.03	21.019	2360.8	2381.8	21.020	2489.1	2510.1
10	1.2281	0.001000	106.32	42.020	2346.6	2388.7	42.022	2477.2	2519.2
15	1.7057	0.001001	77.885	62.980	2332.5	2395.5	62.982	2465.4	2528.3
20	2.3392	0.001002	57.762	83.913	2318.4	2402.3	83.915	2453.5	2537.4
25	3.1698	0.001003	43.340	104.83	2304.3	2409.1	104.83	2441.7	2546.5
30	4.2469	0.001004	32.879	125.73	2290.2	2415.9	125.74	2429.8	2555.6
35	5.6291	0.001006	25.205	146.63	2276.0	2422.7	146.64	2417.9	2564.6
40	7.3851	0.001008	19.515	167.53	2261.9	2429.4	167.53	2406.0	2573.5
45	9.5953	0.001010	15.251	188.43	2247.7	2436.1	188.44	2394.0	2582.4
50	12.352	0.001012	12.026	209.33	2233.4	2442.7	209.34	2382.0	2591.3
55	15.763	0.001015	9.5639	230.24	2219.1	2449.3	230.26	2369.8	2600.1
60	19.947	0.001017	7.6670	251.16	2204.7	2455.9	251.18	2357.7	2608.8
65	25.043	0.001020	6.1935	272.09	2190.3	2462.4	272.12	2345.4	2617.5
70	31.202	0.001023	5.0396	293.04	2175.8	2468.9	293.07	2333.0	2626.1
75	38.597	0.001026	4.1291	313.99	2161.3	2475.3	314.03	2320.6	2634.6
80	47.416	0.001029	3.4053	334.97	2146.6	2481.6	335.02	2308.0	2643.0

Class Activity

- Solution:

$$
\text { Error }=\frac{334.94-333.82}{333.82} \times 100=0.34 \%
$$

THE IDEAL-GAS EQUATION OF STATE

The Ideal-Gas Equation of State

- Property tables provide very accurate information about the properties, but they are
\square Bulky
\square Vulnerable to typographical errors
- It would be nice to have a simple relationship

The Ideal-Gas Equation of State

- Any equation that relates the pressure, temperature, and specific volume of a substance is called an equation of state (there simple and complex ones)
- We used vapor and gas often interchangeably in the first three chapters

The Ideal-Gas Equation of State

- The simplest and best-known equation of state for substances in the gas phase is the ideal-gas equation of state

$$
\begin{gathered}
P=R\left(\frac{T}{v}\right) \\
P v=R T
\end{gathered}
$$

Ideal-gas equation of state

The Ideal-Gas Equation of State

- We can define gas constant for each gas:

$$
R=\frac{R_{u}}{M} \quad\left(\frac{k J}{k g \cdot K} \text { or } \frac{k P a . m^{3}}{k g \cdot K}\right)
$$

R_{u} is the universal gas constant

$$
R_{u}=\left\{\begin{array}{l}
8.31447 \mathrm{~kJ} / \mathrm{kmol} \cdot \mathrm{~K} \\
8.31447 \mathrm{kPa} \cdot \mathrm{~m}^{3} / \mathrm{kmol} \cdot \mathrm{~K} \\
0.0831447 \mathrm{bar} \cdot \mathrm{~m}^{3} / \mathrm{kmol} \cdot \mathrm{~K} \\
1.98588 \mathrm{Btu} / \mathrm{bmol} \cdot \mathrm{R} \\
10.7316 \mathrm{psia} \cdot \mathrm{ft}^{3} / \mathrm{bmol} \cdot \mathrm{R} \\
1545.37 \mathrm{ft} \cdot \mathrm{bf} / \mathrm{lbmol} \cdot \mathrm{R}
\end{array}\right.
$$

The Ideal-Gas Equation of State

- Examples of gas constant for a few known gases:

The Ideal-Gas Equation of State

- M is the molar mass

The mass of one mole of a substance in grams or the mas of kmol in kilograms

- Or, the mass of 1 lbmol in lbm
(e.g., for Nitrogen we have $\mathrm{N}=28 \mathrm{~kg} / \mathrm{kmol}=28 \mathrm{lbm} / \mathrm{lbmol}$)

The Ideal-Gas Equation of State

- Several variations of the ideal-gas equation of state

$$
N=\frac{m}{M}
$$

TABLE A-1					
Molar mass, gas constant, and critical-point properties					
Substance	Formula	Molar mass, $M \mathrm{~kg} / \mathrm{kmol}$	Gas constant, $R \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}^{*}$	Critical-p.	
				Temperature, K	Pressur
Air	-	28.97	0.2870	132.5	3
Ammonia	NH_{3}	17.03	0.4882	405.5	11.
Argon	Ar	39.948	0.2081	151	4.
Benzene	$\mathrm{C}_{6} \mathrm{H}_{6}$	78.115	0.1064	562	4.
Bromine	Br_{2}	159.808	0.0520	584	10.
n-Butane	$\mathrm{C}_{4} \mathrm{H}_{10}$	58.124	0.1430	425.2	3.
Carbon dioxide	CO_{2}	44.01	0.1889	304.2	7.
Carbon monoxide	CO	28.011	0.2968	133	3.
Carbon tetrachloride	CCl_{4}	153.82	0.05405	556.4	4.
Chlorine	Cl_{2}	70.906	0.1173	417	7.
Chloroform	CHCl_{3}	119.38	0.06964	536.6	5
Dichlorodifluoromethane (R-12)	$\mathrm{CCl}_{2} \mathrm{~F}_{2}$	120.91	0.06876	384.7	4

The Ideal-Gas Equation of State

- Several variations of the ideal-gas equation of state

$$
\begin{gathered}
v=\frac{V}{m} \\
P\left(\frac{V}{m}\right)=R T \rightarrow P V=m R T
\end{gathered}
$$

The Ideal-Gas Equation of State

- Several variations of the ideal-gas equation of state

$$
\begin{gathered}
N=\frac{m}{M} \\
P V=(N M) R T \\
P V=N R_{u} T \\
P\left(\frac{V}{N}\right)=R_{u} T \quad \rightarrow P \bar{V}=R_{u} T
\end{gathered}
$$

The Ideal-Gas Equation of State

- Properties per unit mole are:

ia

The Ideal-Gas Equation of State

- By writing the equation twice for a fixed mass and simplifying we can write:

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

CLASS ACTIVITY

Class Activity

- The gage pressure of an automobile tire is measure to be 210 kPa before a trip and 220 kPa after the trip at a location where the atmospheric pressure is 95 kPa . Assuming the volume of the tire remains constant and the air temperature before the trip is $25^{\circ} \mathrm{C}$, determine air temperature after the trip.

Class Activity

- Solution:

$$
P_{1}=P_{g a g e, 1}+P_{a t m}=210+95=305 \mathrm{kPa}
$$

$$
P_{2}=P_{g a g e, 2}+P_{\text {atm }}=220+95=315 \mathrm{kPa}
$$

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}=\frac{315 \mathrm{kPa}}{305 \mathrm{kPa}}(25+273.15 \mathrm{~K})=307.8 \mathrm{~K}=34.8^{\circ} \mathrm{C}
$$

Is Water an Ideal Gas?

COMPRESSIBILITY FACTOR - A MEASURE OF OF DEVIATION FROM IDEAL-GAS BEHAVIOR

Compressibility Factor

Compressibility Factor

- Z factor for all gases is approximately the same at the same reduced temperature and pressure due to the principle of corresponding states

$$
\begin{aligned}
P_{R} & =\frac{P}{P_{c r}} \\
T_{R} & =\frac{T}{T_{C r}}
\end{aligned}
$$

Compressibility Factor

- Generalized compressibility chart

Compressibility Factor

- A few observations:

CLASS ACTIVITY

Class Activity

- Determine specific volume of refrigeratnt-134a at 1 MPa and $50{ }^{\circ} \mathrm{C}$ using (a) the ideal-gas equation of state and (b) the generalized compressibility chart. Compare the values obtained to the actual value of $0.021796 \mathrm{~m}^{3} / \mathrm{kg}$ and determine the error involved in each case.

Class Activity

- Solution (a):

| TABLE A-1 | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$$
v=\frac{R T}{P}=\frac{\left(0.0815 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}\right)(50+273.15 \mathrm{~K})}{1000 \mathrm{kPa}}=0.026325 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}
$$

$$
\text { Error }=\frac{0.026325-0.021796}{0.021796}=0.208
$$

Class Activity

- Solution (b):

$$
\begin{aligned}
& P_{R}=\frac{P}{P_{c r}}=\frac{1 \mathrm{MPa}}{4.059 \mathrm{MPa}}=0.246 \\
& \quad Z=0.84 \\
& T_{R}=\frac{T}{T_{c r}}=\frac{323 \mathrm{~K}}{374.2 \mathrm{~K}}=0.863 \\
& v_{\text {actual }}=Z v_{\text {ideal }}=(0.84)\left(0.026325 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}\right)=0.022113 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} \\
& \text { Error }=\frac{0.022113-0.021796}{0.021796} \sim 0.02
\end{aligned}
$$

