CAE 208 Thermal-Fluids Engineering I MMAE 320: Thermodynamics

Fall 2022

August 25, 2022
 Basic Concepts of Thermodynamics (I)

Built

Environment
Research
@ IIT

Advancing energy, environmental, and sustainability research within the built environment Civil, Architectural and Environmental Engineering www.built-envi.com

Dr. Mohammad Heidarinejad, Ph.D., P.E. Illinois Institute of Technology muh182@iit.edu

ANNOUNCEMENT

Announcement

RECAP

Recap

- Dimensions defines any physical quantity
- The magnitude of dimensions is expressed in units
- Relevant primary or fundamental units are:
\square Temperature (T)
\square Length (L)
\square Time (t)
\square Mass (m)
- Others are secondary or derived:
\square Velocity (L^{-1})
\square Volume (L^{3})

Recap

- Two systems of units are
\square SI: International System which is based on scientific and engineering work
\square IP or English which has no apparent systematic numerical base
- $1 \mathrm{ft}=12 \mathrm{in}$
- 1 mile $=5280 \mathrm{ft}$
- $4 \mathrm{qt}=1 \mathrm{gal}$

Recap

- Common units are:

Dimension	SI Unit	IP Unit
Length	m	ft or inch
Mass	kg	lb
Time	s	s
Temperature	K	F or R

See Table 1-1 and 1-2

Recap

- Some important SI and IP units
\square Force $=($ Mass $)($ Acceleration $)$

$$
\begin{gathered}
1 \mathrm{~N}=(1 \mathrm{~kg})\left(1 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)=1 \mathrm{~kg} \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
1 \mathrm{lbf}=\underset{\substack{(32.174 \mathrm{lbm}) \\
=1 \mathrm{slug}}}{\left(1 \frac{\mathrm{ft}}{\mathrm{~s}^{2}}\right)=\mathrm{lbm} \cdot \frac{\mathrm{ft}}{\mathrm{~s}^{2}}}
\end{gathered}
$$

Units and Dimensions

- Some important SI and IP units
\square Weight $=($ Mass $)($ Gravitational Acceleration $)$

$$
W=(1 \mathrm{~kg})\left(9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)=9.81 \mathrm{~N}
$$

UNITS

Units

- Some important SI and IP units

Work $=($ Force $)($ Distance $)$

$$
1 J=(1 N)(1 m)=1 N \cdot m
$$

What's 1 kJ ?

- 1 Btu (British Thermal Unit) = Energy required to increase 1 lbm of water at $68{ }^{\circ} \mathrm{F}$ by $1^{\circ} \mathrm{F}$
- 1 Btu $=1.0551 \mathrm{~kJ}$
$\square 1$ Calorie $=$ The amount of energy needed to raise the temperature of 1 g of water at $14.5^{\circ} \mathrm{C}$ by $1^{\circ} \mathrm{C}(1$ calorie $=4.1868 \mathrm{~J})$

Units and Dimensions

- Some important SI and IP units
\square Power = Rate of Energy

$$
\begin{gathered}
1 \mathrm{~W}=1 \frac{\mathrm{~J}}{\mathrm{~s}} \\
1 \mathrm{hp}=746 \mathrm{~W}
\end{gathered}
$$

\square Be careful electrical power is usually provided in kWh

CLASS ACTIVITY

Class Activity

- Calculate the mass of water (in both kg and lbm) for a tank with a volume of $2 \mathrm{~m}^{3}$ (assume density of water is 1000 $\mathrm{kg} / \mathrm{m}^{3}$)

CLASS ACTIVITY

Class Activity

- Assuming someone buys a USB power adaptor for an iPhone. If an iPhone requires about 3 hours to get fully charged, calculate the total energy used and also the electricity cost (Note: ComEd's rate is about 10 cents per kWh).

5W USB power adapter

UNIT CONVERSION

Unit Conversion

- Can we convert $1 \mathrm{~m}^{3} / \mathrm{min}$ to $1 \mathrm{~m}^{3} / \mathrm{hr}$?

Unit Conversion

- How about $1 \mathrm{~m}^{3} / \mathrm{min}$ to $\mathrm{ft}^{3} / \mathrm{min}$ (or CFM)?

Unit Conversion

- A small diesel power plant could have a capacity of 5 MW . Could we convert this to hp?

SYSTEMS AND CONTROL VOLUMES

Systems and Control Volume

- A system is defined as quantity of matter or a region in space chosen for study
- A few important aspects of a system: Boundary (movable or fixed) and surrounding

Systems and Control Volume

- A system could be
- Closed system known as "control mass"
\square Open system known as "control volume"

Systems and Control Volume

- Closed system known as "control mass"
\square No Mass
\square Energy Yes (if no energy we call it isolated)

Systems and Control Volume

- Open system known as "control volume"
\square Mass Yes
\square Energy Yes

PROPERTIES OF A SYSTEM

Properties of a System

- Property = Any characteristics of a system
\square Pressure (P)
\square Temperature (T)
\square Volume (V)
\square.
\square.
\square.
\square Thermal conductivity (k)

Properties of a System

- Properties are.
\square Intensive: Independent of mass

Extensive: Depends on the size - extent - of a system

Properties of a System

- Is there a criterion for understanding intensive vs extensive properties?

Properties of a System

- Can we convert an extensive property to an intensive property?

DENSITY AND SPECIFIC GRAVITY

Density and Specific Gravity

- Density $=$ Mass per unit volume
- Specific volume = Volume per mass

Density and Specific Gravity

- What is the density of water and air?

Material	SI $\left(\mathbf{k g} / \mathbf{m}^{3}\right)$	$\mathbf{I P}$ $\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$
Water	997	62.4
Air	1.2754	0.763

Density and Specific Gravity

- Density in general of is a function of pressure and temperature

| Material Temperature Pressure |
| :--- | :--- |
| Gas |
| Liquid |
| Solid |

Density and Specific Gravity

- Specific gravity or relative density is the ratio of the density of a substance to the density of some standard substance at a specific temperature (usually water $4^{\circ} \mathrm{C}$ and $\rho=1000$)

$$
S G=\frac{\rho}{\rho_{H 2 O}}
$$

Density and Specific Gravity

- Specific weight

$$
\gamma_{s}=\rho g
$$

CLASS ACTIVITY

Class Activity

- A $1 \mathrm{~m}^{3}$ container is filled with $0.12 \mathrm{~m}^{3}$ of granite, $0.15 \mathrm{~m}^{3}$ of sand and $0.2 \mathrm{~m}^{3}$ of liquid water at $25^{\circ} \mathrm{C}$, and the rest of the volume, $0.53 \mathrm{~m}^{3}$, is air. Find the overall (average) specific volume and density.
- The following densities could be used for the calculations
$\square \rho_{\text {granite }}=2750 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
- $\rho_{\text {sand }}=1500 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
- $\rho_{\text {water }}=997 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$

生 sand $=1.15 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$

CLASS ACTIVITY

Class Activity

- The density of water liquid is defined as $\rho=1000-\frac{T}{2}$ with T in Celsius. If the temperature increases, what happens to the density and specific volume.

