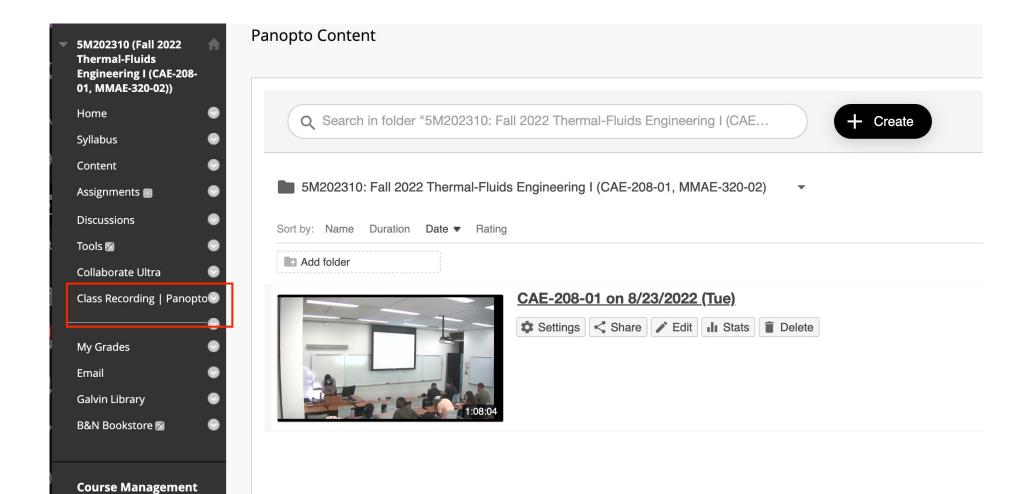
CAE 208 Thermal-Fluids Engineering I MMAE 320: Thermodynamics Fall 2022

August 25, 2022 Basic Concepts of Thermodynamics (I)

Built Environment Research @ IIT] 🗫 🚓 🛧 千


Advancing energy, environmental, and sustainability research within the built environment www.built-envi.com Dr. Mohammad Heidarinejad, Ph.D., P.E.

Civil, Architectural and Environmental Engineering Illinois Institute of Technology

muh182@iit.edu

ANNOUNCEMENT

Announcement

RECAP

Recap

- Dimensions defines any physical quantity
- The magnitude of dimensions is expressed in units
- Relevant primary or fundamental units are:
 - □ Temperature (T)
 - Length (L)
 - □ Time (t)
 - □ Mass (m)
- Others are secondary or derived:
 - □ Velocity (LT⁻¹)
 - $\Box \quad Volume (L^3)$

Recap

- Two systems of units are
 - SI: International System which is based on scientific and engineering work
 - □ IP or English which has no apparent systematic numerical base
 - 1 ft = 12 in
 - 1 mile = 5280 ft
 - 4 qt = 1 gal

• Common units are:

Dimension	SI Unit	IP Unit
Length	m	ft or inch
Mass	kg	lb
Time	S	S
Temperature	K	F or R

See Table 1-1 and 1-2

Recap

• Some important SI and IP units

□ Force = (Mass)(Acceleration)

$$1 N = (1 kg) \left(1 \frac{m}{s^2} \right) = 1 kg. \frac{m}{s^2}$$

$$1 \ lbf = (32.174 \ lbm) \left(1\frac{ft}{s^2}\right) = lbm.\frac{ft}{s^2}$$
$$= 1 \ slug$$

Units and Dimensions

• Some important SI and IP units

Weight = (Mass)(Gravitational Acceleration)

$$W = (1kg)\left(9.81\frac{m}{s^2}\right) = 9.81 N$$

UNITS

Units

Some important SI and IP units

□ Work = (Force)(Distance)

1J = (1N)(1m) = 1N.m

□ What's 1 kJ?

1 Btu (British Thermal Unit) = Energy required to increase 1 lbm of water at 68 °F by 1 °F

□ 1 Btu = 1.0551 kJ

I Calorie = The amount of energy needed to raise the temperature of 1 g of water at 14.5 °C by 1 °C (1 calorie = 4.1868 J)

Units and Dimensions

• Some important SI and IP units

□ Power = Rate of Energy

$$1 W = 1 \frac{J}{s}$$

$$1 hp = 746 W$$

Be careful electrical power is usually provided in kWh

CLASS ACTIVITY

Class Activity

 Calculate the mass of water (in both kg and lbm) for a tank with a volume of 2 m³ (assume density of water is 1000 kg/m³)

CLASS ACTIVITY

Class Activity

 Assuming someone buys a USB power adaptor for an iPhone. If an iPhone requires about 3 hours to get fully charged, calculate the total energy used and also the electricity cost (Note: ComEd's rate is about 10 cents per kWh).

UNIT CONVERSION

Unit Conversion

• Can we convert 1 m³/min to 1 m³/hr?

Unit Conversion

• How about 1 m³/min to ft³/min (or CFM)?

Unit Conversion

• A small diesel power plant could have a capacity of 5 MW. Could we convert this to hp?

SYSTEMS AND CONTROL VOLUMES

- A system is defined as quantity of matter or a region in space chosen for study
- A few important aspects of a system: Boundary (movable or fixed) and surrounding

- A system could be
 - Closed system known as "control mass"
 - Open system known as "control volume"

- Closed system known as "control mass"
 No Mass
 - □ Energy Yes (if no energy we call it isolated)

Open system known as "control volume"
 Mass Yes
 Energy Yes

PROPERTIES OF A SYSTEM

- Property = Any characteristics of a system
 - □ Pressure (P)
 - □ Temperature (T)
 - □ Volume (V)
 - ◘.
 - □.
 - ◘.
 - □ Thermal conductivity (k)

Properties are.
 Intensive: Independent of mass

□ Extensive: Depends on the size – extent - of a system

 Is there a criterion for understanding intensive vs extensive properties?

• Can we convert an extensive property to an intensive property?

DENSITY AND SPECIFIC GRAVITY

- Density = Mass per unit volume
- Specific volume = Volume per mass

• What is the density of water and air?

Material	SI (kg/m³)	IP (lb/ft ³)
Water	997	62.4
Air	1.2754	0.763

Density in general of is a function of pressure and temperature

Material	Temperature	Pressure
Gas		
Liquid		
Solid		

• Specific gravity or relative density is the ratio of the density of a substance to the density of some standard substance at a specific temperature (usually water 4°C and ρ = 1000)

$$SG = \frac{\rho}{\rho_{H2O}}$$

• Specific weight

 $\gamma_s = \rho g$

CLASS ACTIVITY

Class Activity

- A 1 m³ container is filled with 0.12 m³ of granite, 0.15m³ of sand and 0.2 m³ of liquid water at 25 °C, and the rest of the volume, 0.53 m³, is air. Find the overall (average) specific volume and density.
- The following densities could be used for the calculations

$$\Box \rho_{granite} = 2750 \frac{kg}{m^3}$$
$$\Box \rho_{sand} = 1500 \frac{kg}{m^3}$$
$$\Box \rho_{water} = 997 \frac{kg}{m^3}$$
$$\Box \rho_{sand} = 1.15 \frac{kg}{m^3}$$

CLASS ACTIVITY

Class Activity

• The density of water liquid is defined as $\rho = 1000 - \frac{T}{2}$ with T in Celsius. If the temperature increases, what happens to the density and specific volume.