1	Supplementary Information for:
2	
3	A Framework for Estimating the U.S. Mortality Burden of Fine Particulate
4	Matter Exposure Attributable to Indoor and Outdoor Microenvironments
5	•
6	Parham Azimi, Ph.D., ¹ Brent Stephens, Ph.D. ¹
7	¹ Department of Civil, Architectural, and Environmental Engineering, Illinois Institute of
8	Technology, Chicago, IL USA
9	
10	Table of contents
11	
12	Selecting appropriate exposure-response effect estimates for PM _{2.5} of outdoor origin
13	Modifying exposure-response function effect estimates for PM _{2.5} of outdoor origin
14	Scenario 1: Nationwide estimate based primarily on prior field studies
15	Scenario 3: Global Burden of Disease Integrated Exposure-Response model
16	References
17	Figures
18	Tables
19	

Selecting appropriate exposure-response effect estimates for PM_{2.5} of outdoor origin

21 Epidemiology studies that have investigated associations between premature all-cause mortality and long-term outdoor PM2.5 concentrations in the U.S. have reported various relative 22 23 risks (RR) commonly ranging from 6% per 10 μ g/m³ (95% CI: 2% to 11%) to 26% per 10 μ g/m³ (95% CI: 8% to 47%).¹⁻⁹ The differences in magnitudes of RR from each study are attributable 24 25 to a combination of varying cohort population demographics, population susceptibility, outdoor 26 PM_{2.5} sources and compositions, and other factors including those that affect infiltration and 27 persistence in residential indoor environments where people spend most of their time.^{10–16} 28 Despite this variability, it is common to assume that all outdoor PM_{2.5} is equally potent in 29 producing premature mortality regardless of geographic location or other factors for these kinds 30 of population-level analyses.⁹ Therefore, we utilize a central pooled estimate of RR for the 31 increase in long-term all-cause mortality associated with outdoor PM_{2.5} concentrations in the 32 U.S. of 7.3% per 10 μ g/m³ (95% CI: 3.7% to 11%) as reported in a recent quantitative metaanalysis of outdoor PM_{2.5} concentration-response effect estimates.¹⁷ This estimate is similar in 33 34 magnitude to, albeit somewhat higher than, another recent pooled effect estimate of 6% (95% CI: 35 4% to 8%) for all-cause mortality made using a meta-analysis of studies from both the U.S. and Europe.¹⁸ We convert the pooled RR estimate of 1.073 per 10 μ g/m³ to an effect estimate (i.e., 36 37 $\beta_{PM2.5}$) of 0.0070 (95% CI: 0.0036 to 0.0104), where $\beta_{PM2.5} = \ln(\text{RR})/10.^{19}$ We fit a Weibull 38 distribution to these reported values in MATLAB, resulting in a mean (\pm SD) value of $\beta_{PM2.5}$ = 0.0070 (±0.0016) per μ g/m³ with distribution shape factors of $\alpha = 0.765$ and $\beta = 4.95$. A Weibull 39 distribution was used because it yields a distribution that is very close to normal in shape, but 40 41 does not produce any negative values.

Modifying exposure-response function effect estimates for PM_{2.5} of outdoor origin

43 Average times spent in each microenvironment were taken directly from the 1992-1994 National Human Activity Pattern Survey (NHAPS),²⁰ as described in the main text. Average 44 45 outdoor $PM_{2.5}$ infiltration factors for each microenvironment (i.e., F_i) were culled from the existing literature as follows. We assumed the average ambient PM_{2.5} infiltration factor inside 46 47 U.S. residences was 0.59 according to the mean value reported in a recent review of 17 studies spanning over 1000 U.S. homes.²¹ We assumed the average PM_{2.5} infiltration factor in all other 48 49 indoor locations other than residences was 0.49 based on the average modeled indoor 50 concentrations of outdoor origin from a simulation study of small and medium commercial buildings that were designed to reasonably represent the U.S. office building stock.²² Briefly, we 51 52 used MATLAB to fit Weibull and lognormal distributions to their reported percentiles of indoor 53 and outdoor $PM_{2.5}$ concentrations, then used Monte Carlo simulations with 20,000 iterations to build a distribution of infiltration factors based on these two distributions (i.e., $F_{inf} = C_{in}/C_{out}$ in 54 55 the absence of indoor sources). Here we use the mean value of the resulting distribution. While 56 this analysis ignored other non-residential buildings, we are not aware of other robust data sets 57 on infiltration factors in non-office non-residential buildings in the U.S. However, an infiltration 58 factor of 0.49 is reasonably in range with those reported in other non-residential buildings in 59 Europe, including workplaces in Finland²³ and schools in Germany²⁴ and Spain.²⁵ For vehicles, 60 we assumed an average ambient PM_{2.5} infiltration factor of 0.43, assuming personal vehicles 61 operate 50% of the time in recirculated air mode and 50% of the time in outdoor air ventilation mode with infiltration factors of 0.25 and 0.61, respectively.²⁶ Finally, we assumed that people 62 are exposed to 100% of PM_{2.5} of outdoor origin when they spend time outdoors (i.e., $F_{outdoor} = 1$). 63

Scenario 1: Nationwide estimate based primarily on prior field studies

65 Here we describe all relevant model inputs and data sources that were used for the nationwide PM_{2.5} mortality estimate made in Scenario 1. To characterize what we assume to be 66 67 nationally representative time-activity patterns, Table S1 shows stair-step distribution 68 characteristics for the amount of time spent in each of the four microenvironments considered herein, which we transcribed from Figure 3 in Klepeis et al. (2001).²⁰ Values for the fraction of 69 70 time spent in residences, vehicles, and outdoors were all sampled directly from the stair-step 71 distributions in Table S1, while the time spent in other indoor locations was estimated by 72 subtracting the sum of times spent in these three microenvironments from a total of 1440 minutes 73 (i.e., 24 hours).

74 To characterize indoor PM_{2.5} concentrations of indoor origin in all non-residential indoor 75 microenvironments, we assumed an arithmetic mean (\pm SD) of 4.18 \pm 4.98 μ g/m³, which was 76 suggested for the range of indoor PM_{2.5} concentrations resulting from general office work environments in Finland.²³ We constructed a lognormal distribution that resulted in the same 77 78 arithmetic mean \pm SD to avoid negative values while matching the same summary statistics (GM = 2.69 μ g/m³ and GSD = 2.56). Although this approach is limited to office buildings in Finland, 79 80 we are not aware of other studies that have similarly quantified the indoor and ambient 81 contributions to indoor concentrations in non-residential buildings in the U.S. We also consider it 82 reasonable to assume the same values for all non-residential indoor microenvironments 83 regardless of building function based on the close similarities in indoor PM_{2.5} concentrations reported in a recent study of a wide variety of small and medium sized commercial environments 84 in California.27 85

86	To characterize indoor PM _{2.5} concentrations of outdoor origin in non-residential indoor
87	environments, we sampled from the same beta distribution of infiltration factors in small and
88	medium U.S. commercial buildings that we constructed previously from Ben-David et al.
89	(2017). ²² Shape factors for the infiltration factor beta distribution in MATLAB were: $\alpha = 1.82$
90	and $\beta = 1.91$ (Figure S1). Similarly, to characterize PM _{2.5} concentrations of outdoor origin inside
91	vehicles, we sampled equally from two beta distributions fit to reported summary statistics of
92	infiltration factors measured in vehicles operating half the time in recirculated air mode and half
93	the time in outdoor air ventilation mode, with mean \pm SD infiltration factors of 0.25 \pm 0.12 and
94	0.61±0.17, respectively. ²⁶ Shape factors for the assumed beta distributions were $\alpha = 2.98$ and $\beta =$
95	8.72 for recirculating systems and α = 4.32 and β = 2.73 for outdoor air ventilation (Figure S1).
96	We also introduced an in-vehicle exposure modification factor to Equation 3-b to account for
97	near-road PM _{2.5} concentrations that are 22% higher, on average, than central site monitor or
98	background levels. ²⁸ This factor is not incorporated directly into the model framework but is
99	applied uniformly to each model iteration during application. We assumed there are no indoor
100	sources of $PM_{2.5}$ inside vehicles because the focus is on non-smoking microenvironments and it
101	is reasonable to assume there are minimal other PM _{2.5} sources inside most vehicles.
102	To characterize indoor $PM_{2.5}$ concentrations from both indoor and outdoor sources in
103	residences, we rely on two of the largest data sources for field measurements of which we are
104	aware: the Relationship of Indoor, Outdoor and Personal Air (RIOPA) study ²⁹ and the Multi-
105	Ethnic Study of the Atherosclerosis and Air Pollution (MESA Air). ^{30,31} The RIOPA study
106	sampled indoor and outdoor $PM_{2.5}$ concentrations concurrently for 48 hours in 212 non-smoking
107	residences in three U.S. cities. ³² Similarly, MESA Air measured indoor and outdoor $PM_{2.5}$
108	concentrations concurrently over a 2-week period in 208 homes in warm seasons and 264 homes

109 in cold seasons in seven U.S. cities. Both studies are unique in that they included large sample 110 sizes of homes in multiple U.S. cities and also reported distributions of PM_{2.5} infiltration factors, 111 which can be either directly or indirectly used to estimate the relative contributions of both 112 indoor and outdoor sources to indoor PM2.5 concentrations in the sample residences. Because the 113 two studies differed in their population demographics and geographic locations, we use them to 114 conduct three versions of Scenario 1, including sampling input parameters affecting indoor 115 concentrations of PM_{2.5} of indoor and outdoor origin from: (a) RIOPA only, (b) MESA only, and 116 (c) equally from both RIOPA and MESA. For Scenarios 1a and 1b, we assume that either 117 RIOPA or MESA is generally representative of the entire U.S. residential building stock. 118 Because this may not be a valid assumption for either study, Scenario 1c assumes that, when 119 sampled together with equal weighting, the two studies are more generally representative than 120 either study alone.

121 For the RIOPA-only scenario, we estimated distributions of annual average residential 122 indoor PM_{2.5} concentrations of outdoor origin for the year 2012 by sampling from distributions 123 of infiltration factors reported in the study homes and multiplying them by samples drawn from 124 distributions of the U.S. annual average outdoor PM_{2.5} concentration for 2012, as described in 125 the main text. Meng et al. (2005) modeled the distributions of outdoor $PM_{2.5}$ infiltration factors 126 of a subset of 114 of the study homes that had one complete set of 48-hour measurements, resulting in a mean (\pm SD) of 0.54 \pm 0.16.³³ We fit a beta distribution to the reported mean \pm SD 127 128 infiltration factors from RIOPA, resulting in shape factors of $\alpha = 4.70$ and $\beta = 4.00$ (Figure S1). 129 To obtain distributions of the indoor PM_{2.5} concentration resulting from indoor sources 130 alone, lognormal distributions were first fit to match the reported means and standard deviations 131 of indoor and outdoor PM_{2.5} concentrations from the RIOPA study, as shown in Table S2. Next,

distributions for the indoor $PM_{2.5}$ concentration resulting from only indoor sources in the RIOPA residences were estimated using Equation S1 combined with sampling from lognormal distributions for indoor and outdoor $PM_{2.5}$ concentrations and the beta distribution for outdoor $PM_{2.5}$ infiltration factors. Using this approach, we make the necessary assumption that $\Delta C_{PM2.5,AG,residences}$ varies over time (i.e., from year to year) because ambient concentrations vary over time, and that infiltration factors are constant over time. Similarly, we assume that indoor emission sources, and thus $\Delta C_{PM2.5,IG,residences}$, are also constant over time.

$$C_{PM2.5,IG,residence,in} = C_{PM2.5,residence} - (C_{PM2.5,out} * F_{residence})$$
(S1)

139 where $C_{PM2.5,IG,residence}$ is the indoor PM_{2.5} concentration of indoor origin estimated in the 140 RIOPA residences ($\mu g/m^3$); $C_{PM2.5,residence}$ is a sampled value of the indoor PM_{2.5} concentration 141 142 in RIOPA residences based on the distributions fit to data reported in Meng et al. $(2005)^{32}$ $(\mu g/m^3)$; $C_{PM2.5.out}$ is a sampled value of the simultaneous outdoor PM_{2.5} concentration in the 143 RIOPA study based on the distributions fit to data reported in Meng et al. $(2005)^{32}$ (µg/m³); and 144 145 $F_{residence}$ is a sampled value of the corresponding outdoor PM_{2.5} infiltration factor for the same 146 RIOPA residences based on the distributions fit to data reported in Meng et al. $(2005)^{33}$ (-). Using this approach, we estimate that the average contribution of indoor sources to indoor $PM_{2.5}$ 147 148 concentrations in the RIOPA study was ~9.5 μ g/m³, or ~63% of the total indoor PM_{2.5} 149 concentration, with ~37% coming from outdoor sources, on average. 150 For the MESA Air scenario, we also created distributions of annual average residential 151 PM_{2.5} concentrations of indoor and outdoor origin for 2012 by sampling from distributions of 152 infiltration factors and indoor PM_{2.5} concentrations that were attributable to indoor sources, as both were reported directly by Allen et al. (2012).³⁴ Similar to RIOPA, a beta distribution was fit 153 154 to the reported mean \pm SD infiltration factors (0.62 \pm 0.21), with shape factors of α = 2.69 and β =

155	1.65 (Figure S1). We also fit lognormal distributions to the summary statistics for indoor $PM_{2.5}$
156	concentrations that were attributable to indoor sources (i.e., $C_{PM2.5,residence,in}$) in Allen et al.
157	(2012), using the average of cold and warm seasons to represent an assumed annual average
158	(Table S2). Using this approach, the average contribution of indoor sources to indoor $PM_{2.5}$
159	concentrations in MESA Air was ~2.76 $\mu g/m^3,$ or only ~30% of the total indoor $PM_{2.5}$
160	concentration, on average, with $\sim 70\%$ coming from outdoor sources. Clearly, the MESA and
161	RIOPA scenarios represent very different assumptions for the relative contributions of indoor
162	and ambient sources to residential indoor $PM_{2.5}$ concentrations. For the combined 50/50
163	RIOPA/MESA scenario, we sampled from each of the generated distributions equally.
164	In an attempt to verify our model framework, we also repeated Scenario 1 with inputs
165	modified to match those used by Fann et al. $(2017)^{35}$ to estimate the ambient PM _{2.5} mortality
166	burden in the US in 2010. In theory, our model framework should be able to reasonably recreate
167	mortality estimates made using only outdoor PM2.5 concentrations as surrogates for exposure
168	(i.e., the approach used in Fann et al. 2017) since outdoor concentrations should be appropriately
169	re-assigned in the model as exposure estimates in various microenvironments. We re-ran the
170	analysis using the following inputs for the US adult population 35 years and older in 2010: <i>Pop</i> =
171	162,828,035; $y_0 = 1450.8$ per 100,000 persons per year, $\beta_{PM2.5} = 0.583$ mean with SD of 0.096
172	(and a beta distribution fit through the mean and SD), population-weighted average outdoor
173	$PM_{2.5}$ concentration of 8.8 μ g/m ³ (taken directly from Fann et al. 2017), and a threshold outdoor
174	$PM_{2.5}$ concentration of zero. Using the model framework with these assumptions and keeping all
175	other assumptions from the 50/50 RIOPA/MESA combined scenario the same, our best estimate
176	(i.e., median value) of the total annual mortality burden associated with exposure to $PM_{2.5}$ of
177	both indoor and outdoor origin across all microenvironments in 2010 was ~198,100 deaths (IQR

178 of $\sim 149,600$ to $\sim 281,100$). The relative microenvironmental exposure contributions were similar 179 to those in Figure 2c in the main text, and our best estimate of the mortality burden associated 180 with exposure to PM_{2.5} of outdoor origin summed across all microenvironments was ~124,500 181 deaths (IQR of ~49,400 to ~169,700). The result was very similar to the central estimate of 182 $\sim 120,000 (95\% \text{ CI of } 83,000 \text{ to } 160,000)$ annual deaths made by Fann et al. (2017),³⁵ which 183 serves as a reasonable check on the validity of our modeling approach and the accuracy of our 184 results, at least for $PM_{2.5}$ of ambient origin, even though we consider much less detail in 185 geographical variations in population and ambient exposures than Fann et al. (2017). For 186 comparison, the estimated mortality burden associated with indoor PM2.5 sources in this scenario 187 was ~73,600 deaths (IQR of ~10,700 to ~118,300).

188

189 Scenario 3: Global Burden of Disease Integrated Exposure-Response model

190 The Global Burden of Disease (GBD) study and others^{36–40} have used the integrated 191 exposure-response (IER) model developed by Burnett et al. (2014),⁴¹ which estimates the relative 192 risk (RR_{*i*}) of long-term exposure to a wide range of PM_{2.5} concentrations and sources for 193 multiple causes of mortality using Equation S2.

$$RR_i = 1 + \alpha_i \left[1 - e^{-\gamma_i (C - C_0)^{\delta_i}} \right] \quad \text{for } C > C_0$$
(S2-a)

$$RR_i = 1 \quad \text{for } C \le C_0 \tag{S2-b}$$

194

where *C* is the exposure concentration (μ g/m³), *C*₀ is the concentration below which there is an assumption of no additional risk (μ g/m³), *i* is one of five causes of mortality, and α_i , γ_i , and δ_i are statistical parameters that result from fitting the model to RR results from a large number of global epidemiological studies for each mortality endpoint. The premature mortality *M* for a 199 given population range *j* and disease endpoint *i* is estimated for a given region using Equation 200 $S3.^{36}$

$$M_{i,j} = Pop_j \widehat{y}_{0_{i,j}}(RR_{i,j}(C)) - 1) \quad \text{where } \widehat{y}_{0_{i,j}} = \frac{y_{0_{i,j}}}{\overline{RR}_i}$$
(S3)

where Pop_j is the region's population for age range *j* and $y_{0_{i,j}}$ is the region's annual average disease incidence for population age range *j*, and \overline{RR}_i is the average population-weighted relative risk for endpoint *i*, as shown in Equation S4.³⁶

$$\overline{RR}_{i} = \frac{\sum_{j=1}^{N_{i}} Pop_{j}RR_{i,j}(C)}{\sum_{j=1}^{N} Pop_{j}}$$
(S4)

204 where N_i is the total number of age ranges for endpoint *i*.

205 The IER methodology was developed in part because the exposure-response function in 206 Equation 1 in the main text is based on epidemiology cohort studies in the U.S. and Europe with 207 outdoor PM_{2.5} concentrations typically below 30 μ g/m³, which may not be representative for 208 countries with much higher ambient air pollution levels³⁷ or for other, higher, PM_{2.5} exposures 209 such as secondhand- or active-smoking. Therefore, the IER methodology integrates estimates of 210 the RR of multiple causes of mortality, including ischemic heart disease (IHD), cerebrovascular 211 disease (stroke), chronic obstructive pulmonary disease (COPD), and lung cancer (LC) for adults 212 over 25, as well as acute lower respiratory infection (ALRI) for children under 5, that have been 213 associated with a wide range of PM_{2.5} exposure concentrations (i.e., from 0 to \sim 30,000 µg/m³) 214 resulting from a variety of PM_{2.5} sources, including ambient air pollution, secondhand smoke, 215 active smoking, and household air pollution. RR estimates are then converted to population-wide 216 excess mortality estimates using age-specific mortality and demographic data.

217	As an example application of the IER approach, Cohen et al. (2015) estimated that
218	approximately 88,400 deaths (95% CI: 66,800-115,000) were associated with outdoor $PM_{2.5}$
219	exposures in the U.S. in 2015. ³⁹ Similarly, Apte et al. (2015) estimated that approximately
220	103,000 deaths (CI unknown) were associated with outdoor $PM_{2.5}$ exposures in the U.S. in
221	2010. ³⁶ As another example, Wang et al. $(2017)^{42}$ used the IER model – combined with look-up
222	tables for RR values across a range of ambient $PM_{2.5}$ concentrations from 5.8 to 410 $\mu g/m^3$
223	provided by Apte et al. $(2015)^{37}$ – to estimate the mortality burden associated with ambient PM _{2.5}
224	exposure in high-income North America (i.e., Canada and the U.S.) to be only ~51,000 deaths in
225	2010. We approximate the U.S. mortality burden from this same estimate to be in the range of
226	~45,000 given that Canada had ~11% of the population of the U.S. in 2010. Another more recent
227	study introduced the Global Exposure Mortality Model (GEMM), building on the IER model, for
228	estimating global mortality associated with ambient PM2.5 exposures. Their estimate of excess
229	all-cause mortality attributable to ambient $PM_{2.5}$ in North America in 2015 was ~213,000
230	deaths, while the same estimate using the IER approach was only 95,000, suggesting that the IER
231	model underestimates all-cause mortality. ⁴³
232	For comparison purposes, we re-ran a version of Scenario 1 using the IER model
233	approach (i.e., substituting Equations S1-S4 for Equation 1 in the Monte Carlo analysis) to
234	estimate the premature mortality for adults 35 years and older attributable to IHD, stroke, COPD,
235	and LC. We excluded ALRI in young children because of its extremely low prevalence in the
236	U.S. We considered one age range (i.e., 35 years and older) for COPD and LC, and ten age
237	ranges for IHD and stroke (i.e., 35-40, 40-45, 45-50, 50-55, 55-60, 60-65, 65-70, 70-75, 75-80,
238	and +80 years old). Table S3 summarizes the population and disease incidence for each of these
239	age groups and disease conditions gathered from the CDC WONDER system. ⁴⁴ We used the RR

240 look-up tables from Apte et al. $(2015)^{37}$ similar to Wang et al. $(2017)^{42}$ to assign a RR value for 241 each mortality endpoint and modeled concentration. This necessitates making the assumption of 242 a 5.8 µg/m³ threshold concentration, below which no additional mortality is assumed.

243 Using the IER approach with inputs from Scenario 1, we estimate that the total mortality 244 associated with $PM_{2.5}$ exposure from all sources and across all microenvironments is $\sim 38,400$ deaths annually (Table S4). We estimate that exposure to PM_{2.5} of outdoor origin across all 245 246 microenvironments accounted for $\sim 24,000$ deaths in 2012 (IQR of $\sim 9,200$ to $\sim 32,700$ deaths), 247 and exposure to PM_{2.5} of indoor origin across all microenvironments accounted for ~14,400 248 deaths (IQR of ~2,000 to ~22,400). Results from the IER scenario are drastically lower than 249 results from Scenario 1 and 2 for several reasons, primarily including: (1) the use of a 5.8 μ g/m³ 250 threshold concentration compared to the no-threshold assumption; (2) the IER model presents a 251 different model form and parameter fits that may yield different effect estimates from the 252 traditional exposure-response (E-R) function and effect estimates used herein; and (3) the IER 253 model is fit through ambient air pollution studies at the low end of the concentration range, and 254 is thus not modified for microenvironmental exposures to PM2.5 of outdoor origin that would 255 have occurred in the original cohort studies. Results for the total mortality associated with PM_{2.5} 256 of outdoor origin from the IER scenario are also lower than previous estimates, including: just 257 over half of that reported by Wang et al. (2017)⁴² (mostly attributed to our modification of 258 ambient origin exposures by microenvironmental infiltration factors), and approximately onequarter of that reported by Cohen et al. (2015)³⁹ and Apte et al. (2015)³⁶ (mostly attributed of the 259 260 aforementioned underlying discrepancies that exist between Wang et al. and Cohen et al. and 261 Apte et al., for reasons that are not immediately clear).

262 For these varied reasons, a comparison between the IER approach in Scenario 3 and the 263 E-R approaches in Scenario 1 and 2 is not directly valid without some additional modification. 264 Therefore, we re-ran Scenario 1 again using the original E-R model form (i.e., Equation 1 in the 265 main text) with the following changes to provide a more appropriate comparison to the IER 266 model: (1) we introduced a threshold concentration of 5.8 μ g/m³ to each model iteration, below 267 which no excess mortality is assumed to occur; (2) we used unmodified effect estimates (i.e., 268 assuming $\Sigma F_i \times t_i = 1$ in Equation 4 in the main text) rather than our modified effect estimates; and 269 (3) we used both our primary all-cause mortality endpoint effect estimate (i.e., $\beta = 0.0070$ per $\mu g/m^3)^{17}$ and a lower effect estimate that has been used in other recent studies (i.e., $\beta = 0.0058$ 270 271 per $\mu g/m^3$)⁵ because we are uncertain as to which effect estimate would yield similar mortality predictions as the IER approach with RRs from Apte et al. (2015).³⁷ 272

273 Results from the two additional Scenario 1 case studies are shown in Table S4 below the 274 GBD IER case studies. The median total mortality estimates using the generic E-R model 275 (Equation 1 in the main text) with $\beta = 0.0070$ per $\mu g/m^3$ and $\beta = 0.0058$ per $\mu g/m^3$ were ~42,600 276 and ~36,000 deaths annually, respectively. Results from the IER model application were 277 approximately in between these two estimates, which suggests that the application of the IER 278 model yields mortality estimates that are approximately equivalent to applying the E-R model 279 form with the assumption of an unmodified total all-cause mortality excess RR of ~6 to ~7% per 280 $10 \,\mu\text{g/m}^3$ with a threshold of 5.8 $\mu\text{g/m}^3$. Importantly, the similarities in both model results using 281 the same or equivalent inputs also suggests that the vast majority of the difference in mortality 282 estimates between Scenario 3 and Scenarios 1 and 2 is driven by the assumption of a 5.8 μ g/m³ 283 threshold concentration in Scenario 3 compared to a zero threshold concentration in Scenarios 1 284 and 2. This is a critical discrepancy that the research community must address if analyses like

285	this and others are to	be relied upon	for informing	high-level	policy decisions.	Our original

- assumption of a no threshold concentration is consistent with a number of studies that have
- 287 demonstrated or suggested that there is no evidence of a population threshold in the relationship
- between long-term exposure to ambient PM_{2.5} and mortality.^{8,45–47} However, the majority of
- applications of the IER model have assumed either a threshold concentration of $5.8 \,\mu g/m^3$ (e.g.,
- 36,42) or a distribution between 2.4 and 5.8 μ g/m³ (e.g., ³⁹). Since a large portion of the mortality
- 291 burden estimated using these types of risk assessment functions is attributable to PM_{2.5}
- 292 concentrations at the lower end of the curve, these two modeling assumptions can yield vastly
- 293 different mortality estimates.

294 **References**

- Di Q, Wang Y, Zanobetti A, Wang Y, Koutrakis P, Choirat C *et al.* Air Pollution and
 Mortality in the Medicare Population. *New England Journal of Medicine* 2017; **376**: 2513–
 2522.
- 298 2 Dockery DW, Pope CA 3rd, Xu X, Spengler JD, Ware JH, Fay ME *et al.* An association
 299 between air pollution and mortality in six U.S. cities. *N Engl J Med* 1993; **329**: 1753–1759.
- Jerrett M, Burnett RT, Ma R, Pope CA, Krewski D, Newbold KB *et al.* Spatial Analysis of
 Air Pollution and Mortality in Los Angeles: *Epidemiology* 2005; 16: 727–736.
- Krewski D, Jerrett M, Rt B, R M, E H, Y S *et al.* Extended follow-up and spatial analysis of
 the American Cancer Society study linking particulate air pollution and mortality. *Res Rep Health Eff Inst* 2009; : 5–114; discussion 115-36.
- Laden F, Schwartz J, Speizer FE, Dockery DW. Reduction in Fine Particulate Air Pollution
 and Mortality: Extended Follow-up of the Harvard Six Cities Study. *Am J Respir Crit Care Med* 2006; **173**: 667–672.
- Pope CA, Thun MJ, Namboodiri MM, Dockery DW, Evans JS, Speizer FE *et al.* Particulate
 Air Pollution as a Predictor of Mortality in a Prospective Study of U.S. Adults. *Am J Respir Crit Care Med* 1995; **151**: 669–674.
- Pope CA, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K *et al.* Lung cancer,
 cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. *JAMA*2002; 287: 1132–1141.

314 8 Roman HA, Walker KD, Walsh TL, Conner L, Richmond HM, Hubbell BJ et al. Expert 315 Judgment Assessment of the Mortality Impact of Changes in Ambient Fine Particulate 316 Matter in the U.S. Environmental Science & Technology 2008; 42: 2268–2274. 317 US EPA. The Benefits and Costs of the Clean Air Act from 1990 to 2020. U.S. 9 318 Environmental Protection Agency Office of Air and Radiation: Washington, DC, 319 2011http://www.epa.gov/cleanairactbenefits/feb11/fullreport rev a.pdf. 320 10 Eftim SE, Samet JM, Janes H, McDermott A, Dominici F. Fine particulate matter and 321 mortality: a comparison of the six cities and American Cancer Society cohorts with a medicare cohort. Epidemiology 2008; 19: 209-216. 322 323 11 Hodas N, Meng Q, Lunden MM, Rich DQ, Özkaynak H, Baxter LK et al. Variability in the fraction of ambient fine particulate matter found indoors and observed heterogeneity in 324 325 health effect estimates. Journal of Exposure Science and Environmental Epidemiology 326 2012; 22: 448–454. 327 12 Puett RC, Schwartz J, Hart JE, Yanosky JD, Speizer FE, Suh H et al. Chronic particulate 328 exposure, mortality, and coronary heart disease in the nurses' health study. Am J Epidemiol 329 2008; **168**: 1161–1168. 330 13 Zeger SL, Dominici F, McDermott A, Samet JM. Mortality in the Medicare population and 331 chronic exposure to fine particulate air pollution in urban centers (2000-2005). Environ 332 Health Perspect 2008; 116: 1614–1619. 333 14 Chen C, Zhao B, Weschler CJ. Indoor exposure to "outdoor PM10". *Epidemiology* 2012; 334 **23**: 870–878. 335 15 Ji W, Zhao B. Estimating mortality derived from indoor exposure to particles of outdoor origin. PLOS ONE 2015; 10: e0124238. 336 337 16 Bell ML, Ebisu K, Peng RD, Dominici F. Adverse Health Effects of Particulate Air 338 Pollution: Modification by Air Conditioning. Epidemiology 2009; 20: 682-686. 339 17 Fann N, Gilmore EA, Walker K. Characterizing the Long-Term PM 2.5 Concentration-340 Response Function: Comparing the Strengths and Weaknesses of Research Synthesis Approaches: Characterizing Long-Term PM 2.5 Concentration-Response Function. Risk 341 342 Analysis 2016; 36: 1693-1707. 343 18 Hoek G, Krishnan RM, Beelen R, Peters A, Ostro B, Brunekreef B et al. Long-term air 344 pollution exposure and cardio- respiratory mortality: a review. Environmental Health 2013; 345 12. doi:10.1186/1476-069X-12-43. 346 19 Rackes A, Ben-David T, Waring MS. Outcome-based ventilation: A framework for 347 assessing performance, health, and energy impacts to inform office building ventilation 348 decisions. Indoor Air 2018. doi:10.1111/ina.12466.

349 350 351	20	Klepeis NE, Nelson WC, Ott WR, Robinson JP, Tsang AM, Switzer P <i>et al.</i> The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. <i>J Expo Anal Environ Epidemiol</i> 2001; 11 : 231–252.
352 353	21	Chen C, Zhao B. Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. <i>Atmos Environ</i> 2011; 45 : 275–288.
354 355 356	22	Ben-David T, Rackes A, Waring MS. Alternative ventilation strategies in U.S. offices: Saving energy while enhancing work performance, reducing absenteeism, and considering outdoor pollutant exposure tradeoffs. <i>Building and Environment</i> 2017; 116 : 140–157.
357 358 359	23	Hänninen OO, Palonen J, Tuomisto JT, Yli-Tuomi T, Seppanen O, Jantunen MJ. Reduction potential of urban PM2.5 mortality risk using modern ventilation systems in buildings. <i>Indoor Air</i> 2005; 15 : 246–256.
360 361 362	24	Fromme H, Diemer J, Dietrich S, Cyrys J, Heinrich J, Lang W <i>et al.</i> Chemical and morphological properties of particulate matter (PM10, PM2.5) in school classrooms and outdoor air. <i>Atmospheric Environment</i> 2008; 42 : 6597–6605.
363 364 365	25	Rivas I, Viana M, Moreno T, Bouso L, Pandolfi M, Alvarez-Pedrerol M <i>et al.</i> Outdoor infiltration and indoor contribution of UFP and BC, OC, secondary inorganic ions and metals in PM 2.5 in schools. <i>Atmospheric Environment</i> 2015; 106 : 129–138.
366 367 368	26	Hudda N, Fruin SA. Models for Predicting the Ratio of Particulate Pollutant Concentrations Inside Vehicles to Roadways. <i>Environmental Science & Technology</i> 2013; 47 : 11048– 11055.
369 370 371	27	Wu X, Apte MG, Bennett DH. Indoor Particle Levels in Small- and Medium-Sized Commercial Buildings in California. <i>Environmental Science & Technology</i> 2012; 46 : 12355–12363.
372 373 374	28	Karner AA, Eisinger DS, Niemeier DA. Near-Roadway Air Quality: Synthesizing the Findings from Real-World Data. <i>Environmental Science & Technology</i> 2010; 44 : 5334–5344.
375 376 377 378	29	Weisel CP, Zhang J, Turpin BJ, Morandi MT, Colome S, Stock TH <i>et al.</i> Relationship of Indoor, Outdoor and Personal Air (RIOPA) study: study design, methods and quality assurance/control results. <i>Journal of Exposure Analysis and Environmental Epidemiology</i> 2004; 15 : 123–137.
379 380 381	30	Cohen MA, Adar SD, Allen RW, Avol E, Curl CL, Gould T <i>et al.</i> Approach to Estimating Participant Pollutant Exposures in the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). <i>Environ Sci Technol</i> 2009; 43 : 4687–4693.
382 383 384 385	31	Kaufman JD, Adar SD, Allen RW, Barr RG, Budoff MJ, Burke GL <i>et al.</i> Prospective Study of Particulate Air Pollution Exposures, Subclinical Atherosclerosis, and Clinical Cardiovascular Disease: The Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). <i>American Journal of Epidemiology</i> 2012; 176 : 825–837.

- 386 32 Meng QY, Turpin BJ, Korn L, Weisel CP, Morandi M, Colome S *et al.* Influence of ambient
 (outdoor) sources on residential indoor and personal PM2.5 concentrations: Analyses of
 RIOPA data. *J Expo Anal Environ Epidemiol* 2005; 15: 17–28.
- 389 33 Meng QY, Turpin BJ, Polidori A, Lee JH, Weisel C, Morandi M *et al.* PM2.5 of ambient
 390 origin: estimates and exposure errors relevant to PM epidemiology. *Environmental Science* 391 & *Technology* 2005; **39**: 5105–5112.
- 34 Allen RW, Adar SD, Avol E, Cohen M, Curl CL, Larson T *et al.* Modeling the residential
 infiltration of outdoor PM2.5 in the Multi-Ethnic Study of Atherosclerosis and Air Pollution
 (MESA Air). *Environmental Health Perspectives* 2012; **120**: 824–830.
- 35 Fann N, Kim S-Y, Olives C, Sheppard L. Estimated Changes in Life Expectancy and Adult
 Mortality Resulting from Declining PM2.5 Exposures in the Contiguous United States:
 1980–2010. Environmental Health Perspectives 2017; 125. doi:10.1289/EHP507.
- 398 36 Apte JS, Marshall JD, Cohen AJ, Brauer M. Addressing Global Mortality from Ambient
 399 PM_{2.5}. *Environmental Science & Technology* 2015; 49: 8057–8066.
- 400 37 Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A. The contribution of outdoor air
 401 pollution sources to premature mortality on a global scale. *Nature* 2015; **525**: 367–371.
- 402 38 Rohde RA, Muller RA. Air Pollution in China: Mapping of Concentrations and Sources.
 403 *PLOS ONE* 2015; **10**: e0135749.
- 404 39 Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K *et al.* Estimates and 25405 year trends of the global burden of disease attributable to ambient air pollution: an analysis
 406 of data from the Global Burden of Diseases Study 2015. *The Lancet* 2017; **389**: 1907–1918.
- 407 40 Chowdhury S, Dey S, Smith KR. Ambient PM2.5 exposure and expected premature
 408 mortality to 2100 in India under climate change scenarios. *Nature Communications* 2018; 9.
 409 doi:10.1038/s41467-017-02755-y.
- 410 41 Burnett RT, Pope CA III, Ezzati M, Olives C, Lim SS, Mehta S *et al.* An Integrated Risk
 411 Function for Estimating the Global Burden of Disease Attributable to Ambient Fine
 412 Particulate Matter Exposure. *Environmental Health Perspectives* 2014.
 413 doi:10.1289/ehp.1307049.
- 414 42 Wang J, Xing J, Mathur R, Pleim JE, Wang S, Hogrefe C *et al.* Historical Trends in PM2.5415 Related Premature Mortality during 1990–2010 across the Northern Hemisphere.
 416 *Environmental Health Perspectives* 2016; **125**. doi:10.1289/EHP298.
- 417 43 Burnett R, Chen H, Szyszkowicz M, Fann N, Hubbell B, Pope CA *et al.* Global estimates of
 418 mortality associated with long-term exposure to outdoor fine particulate matter. *PNAS* 2018;
 419 : 201803222.

- 420 44 CDC. National Center for Health Statistics WONDER Online Database: Compressed
- 421 Mortality File 1999-2016 Series 20, No. 2V. CDC WONDER.
- 422 2017.https://wonder.cdc.gov/cmf-icd10.htm (accessed 22 May2018).
- 45 Crouse DL, Peters PA, van Donkelaar A, Goldberg MS, Villeneuve PJ, Brion O *et al.* Risk
 424 of Nonaccidental and Cardiovascular Mortality in Relation to Long-term Exposure to Low
 425 Concentrations of Fine Particulate Matter: A Canadian National-Level Cohort Study.
 426 *Environmental Health Perspectives* 2012; **120**: 708–714.
- 46 Schwartz J, Coull B, Laden F, Ryan L. The Effect of Dose and Timing of Dose on the
 Association between Airborne Particles and Survival. *Environmental Health Perspectives*2007; 116: 64–69.
- 47 Pinault L, Tjepkema M, Crouse DL, Weichenthal S, van Donkelaar A, Martin RV *et al.*431 Risk estimates of mortality attributed to low concentrations of ambient fine particulate
 432 matter in the Canadian community health survey cohort. *Environmental Health* 2016; 15.
 433 doi:10.1186/s12940-016-0111-6.
- 434

436 Figures

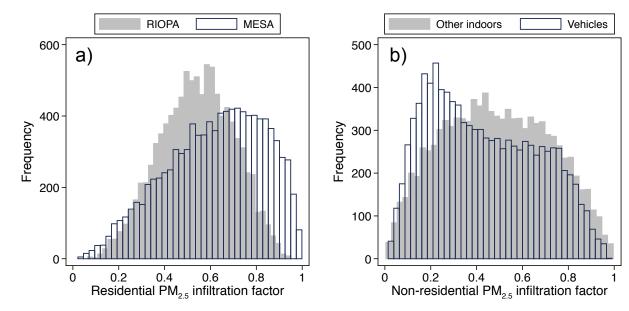


Figure S1. Beta distributions of PM_{2.5} infiltration factors used in Scenario 1: a) two residential distributions
(RIOPA and MESA) and b) other indoor environments and vehicles (which were also used in Scenario 2).
Distribution shape factors are described in the SI text.

Tables

444
445

 Table S1. Summary of stair-step distribution characteristics for the amount of time spent in various microenvironments based on Figure 3 in Klepeis et al. (2001), used in all model scenarios

	Residen	Residences Vehicles Outdoors		ors	Other indoor	locations		
	Reported	Modeled	Reported Modeled Reported Modeled		Modeled	Reported	Modeled	
Average (min)	990	978	79	59	109	98	262	305
		i		ī		1		1
Bin #	Range (min)	Prob.	Range (min)	Prob.	Range (min)	Prob.	Range (min)	Prob.
1	0-50	0.0085	0-60	0.6475	0-60	0.5564		
2	50-100	0.0028	60-120	0.0965	60-120	0.2700		
3	100-150	0.0028	120-180	0.0727	120-180	0.1080		
4	150-200	0.0038	180-240	0.0441	180-240	0.0240		
5	200-250	0.0038	240-300	0.0330	240-300	0.0120		
6	250-300	0.0038	300-360	0.0240	300-360	0.0090		
7	300-350	0.0038	360-420	0.0240	360-420	0.0054		
8	350-400	0.0058	420-480	0.0120	420-480	0.0054		
9	400-450	0.0068	480-540	0.0120	480-540	0.0025		
10	450-500	0.0125	540-600	0.0120	540-600	0.0025		
11	500-550	0.0125	600-660	0.0090	600-660	0.0025		
12	550-600	0.0200	660-720	0.0048	660-720	0.0025	_	_
13	600-650	0.0300	720-780	0.0030	720-780	0.0000	ited	ited
14	650-700	0.0400	780-840	0.0018	780-840	0.0000	ula	ula
15	700-750	0.0500	840-900	0.0018	840-900	0.0000	alc	calc
16	750-800	0.0655	900-960	0.0018	900-960	0.0000	k-c	Back-calculated
17	800-850	0.0655	960-1020	0.0000	960-1020	0.0000	Back-calculated	
18	850-900	0.0675	1020-1080	0.0000	1020-1080	0.0000	Н	щ
19	900-950	0.0615	1080-1140	0.0000	1080-1140	0.0000		
20	950-1000	0.0500	1140-1200	0.0000	1140-1200	0.0000		
21	1000-1050	0.0450	1200-1260	0.0000	1200-1260	0.0000		
22	1050-1100	0.0496	1260-1320	0.0000	1260-1320	0.0000		
23	1100-1150	0.0450	1320-1380	0.0000	1320-1380	0.0000		
24	1150-1200	0.0475	1380-1440	0.0000	1380-1440	0.0000		
25	1200-1250	0.0447		•				
26	1250-1300	0.0466						
27	1300-1350	0.0418						
28	1350-1400	0.0428						
29	1400-1440	0.1205						

449 Table S2. Summary of distributions of residential indoor and outdoor PM2.5 concentrations, PM2.5 infiltration

450 factors, and indoor PM2.5 concentrations attributable to outdoor sources in the RIOPA and MESA Air

451	studies that were used to fit distributions to the indoor PM2.5 concentrations that result from indoor sources
150	

452

in Scenario 1

Study	Reference	Model Parameter	Distribution Type	$Mean \pm SD (\mu g/m^3)^*$
	$M_{\rm eff} = 4 c 1 (2005)^{32}$	Indoor PM _{2.5} concentration	Lognormal	GM: 15.6 GSD: 1.7
RIOPA	Meng et al. $(2005)^{32}$	Outdoor PM _{2.5} concentration	Lognormal	GM: 14.3 GSD: 1.9
	Meng et al. (2005) ³³	PM _{2.5} infiltration factor	Beta	0.54 ± 0.16
	Calculated	Indoor PM _{2.5} concentration attributable to indoor sources	n/a	8.7 ± 11.8
		Indoor PM _{2.5} concentration (cold season)	n/a	10.4 ± 7.0
		Indoor PM _{2.5} concentration (warm season)	n/a	12.8 ± 5.6
		Outdoor PM _{2.5} concentration (cold season)	n/a	13.5 ± 5.8
		Outdoor PM _{2.5} concentration (warm season)	n/a	15.8 ± 3.9
MESA Air	Allen et al. $(2012)^{34}$	Indoor PM _{2.5} concentration attributable to indoor sources (cold season)	n/a	2.8 ± 4.8
- All		Indoor PM _{2.5} concentration attributable to indoor sources (warm season)	n/a	2.7 ± 4.0
		PM _{2.5} infiltration factor	Beta	0.62 ± 0.21
	Calculated	Indoor PM _{2.5} concentration attributable to indoor sources (combined seasons)	Lognormal	GM: 1.5 GSD: 3.1

453 454 *For lognormal distributions, GM = geometric mean and GSD = geometric standard deviation.

n/a = values reported in the cited references but not used directly in the model application.

Cause of Mortality	Age ranges	Population in 2012	Average disease incidence (y ₀)
COPD	+ 35	166,516,716	0.000840
Lung Cancer	+ 35	166,516,716	0.000948
	35 - 39	19,488,199	0.000082
	40 - 44	21,028,221	0.000171
	45 - 49	21,689,479	0.000354
	50 - 54	22,579,259	0.000631
IIID	55 - 59	20,772,517	0.000996
IHD	60 - 64	17,813,685	0.001517
	65 - 69	13,977,353	0.002159
	70 - 74	10,008,039	0.003260
	75 - 79	7,489,583	0.005340
	+ 80	11,670,381	0.016506
	35 - 39	19,488,199	0.000029
	40 - 44	21,028,221	0.000053
	45 - 49	21,689,479	0.000097
	50-54	22,579,259	0.000146
Stroke	55 - 59	20,772,517	0.000219
SUOKE	60 - 64	17,813,685	0.000334
	65 - 69	13,977,353	0.000523
	70 - 74	10,008,039	0.000961
	75 - 79	7,489,583	0.001789
	+ 80	11,670,381	0.005845

Table S3. Summary of the IER model input parameters used herein for adults 35 years and older. Data taken from the CDC WONDER system.⁴³

Table S4. Mean, standard deviation (SD), and interquartile range (IQR: 25th to 75th percentiles) of the estimated contributions to total PM_{2.5} exposures resulting from IER and E-R models with unmodified effect estimates and a threshold concentration of 5.8 µg/m³ for the U.S. population 35 years and older in 2012.

Applied Model	Outdoor or Indoor Sources	Microenvironment	Mean fraction of total PM _{2.5} exposure ± SD	IQR of fraction of total PM _{2.5} exposure	Mean estimate of annual deaths attributed to total PM2.5 exposure ± SD	IQR of estimate of annual deaths attributed to total PM2.5 exposure
	Due to PM _{2.5} of	Residences	41.9% ± 24.1%	21.9% - 58.7%	$16,089 \pm 9,244$	8,410 - 22,545
	outdoor origin	Other indoor locations	10.8% ± 12.8%	0.0% - 16.8%	4,144 ± 4,928	0 - 6,460
odel		Vehicles	$2.4\% \pm 4.0\%$	0.3% - 2.7%	916 ± 1,524	120 - 1,023
Rmo		Outdoor	7.4% ± 11.3%	1.7% - 6.9%	$2,840 \pm 4,355$	667 - 2,649
Unmodified IER model	Total outdoor cont		62.5%	± 25.4%	$23,989 \pm 9,756$	9,196 - 32,677
odific	Due to PM _{2.5} of	Residences	28.2% ± 26.5%	5.2% - 47.9%	$10,838 \pm 10,159$	2,011 - 18,397
Unm	indoor origin	Other indoor locations	9.3% ± 13.0%	0.0% - 13.0%	3,554 ± 4,991	0 - 5,002
	Total indoor contribution		37.5% ± 25.4%		14,393 ± 9,756	2,011 - 23,398
	Total contribution		10	0%	38,382*	11,208 - 56,075
per	Due to PM _{2.5} of	Residences	42.0% ± 24.0%	22.3% - 58.8%	$17,903 \pm 10,231$	9,526 - 25,049
0070	outdoor origin	Other indoor locations	10.9% ± 13.0%	0.0% - 16.8%	$4,648 \pm 5,534$	0 - 7,144
<i>B</i> = 0.		Vehicles	2.4% ± 4.0%	0.3% - 2.7%	$1,029 \pm 1,710$	130 - 1,164
odel (^{m3})		Outdoor	7.2% ± 11.2%	1.7% - 6.4%	$3,052 \pm 4,762$	745 - 2,738
-R model μg/m ³)	Total outdoor contribution		62.5% ± 25.3%		26,632 ± 10,766	10,401 - 36,096
ied E-	Due to PM _{2.5} of	Residences	28.3% ± 26.5%	5.1% - 48.2%	12,054 ± 11,290	2,193 - 20,546
Unmodified E-R model (β = 0.0070 per μg/m³)	indoor origin	Other indoor locations	9.2% ± 13.0%	0.0% - 12.7%	3,937 ± 5,532	0 - 5,395
Unn	Total indoor contribution		37.5% ± 25.3%		15,991 ± 10,766	2,193 - 25,940

	Total contribution		100%		42,623*	12,594 - 62,036
Unmodified E-R model (β = 0.0058 per μg/m³)	Due to PM _{2.5} of outdoor origin	Residences	41.9% ± 23.8%	22.6% - 58.6%	$15,097 \pm 8,590$	8,155 - 21,118
		Other indoor locations	10.9% ± 12.9%	0.1% - 17.0%	$3,921 \pm 4,644$	22 - 6,131
		Vehicles	$2.3\% \pm 3.7\%$	0.3% - 2.7%	$844 \pm 1,346$	126 - 979
		Outdoor	7.5% ± 11.5%	1.8% - 7.0%	$2,688 \pm 4,128$	640 - 2,535
	Total outdoor contribution		62.6% ± 25.2%		$22,550 \pm 9,079$	8,942 - 30,763
	Due to PM _{2.5} of indoor origin	Residences	28.1% ± 26.3%	5.2% - 48.2%	$10,108 \pm 9,479$	1,860 - 17,359
		Other indoor locations	$9.4\% \pm 13.0\%$	0.0% - 13.2%	$3,371 \pm 4,669$	13 - 4,755
	Total indoor contribution		37.4% ± 25.2%		$13,478 \pm 9,079$	1,873 - 22,114
* 771	Total contribution		100%		36,028*	10,815 - 52,877

* The estimates of total contributions are based on the median values.