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A B S T R A C T   

Urban areas contribute substantially to human exposure to ambient air pollution. Numerous statistical prediction 
models have been used to estimate ambient concentrations of fine particulate matter (PM2.5) and other pollutants 
in urban environments, with some incorporating machine learning (ML) algorithms to improve predictive power. 
However, many ML approaches for predicting ambient pollutant concentrations to date have used principal 
component analysis (PCA) with traditional regression algorithms to explore linear correlations between variables 
and to reduce the dimensionality of the data. Moreover, while most urban air quality prediction models have 
traditionally incorporated explanatory variables such as meteorological, land use, transportation/mobility, and/ 
or co-pollutant factors, recent research has shown that local emissions from building infrastructure may also be 
useful factors to consider in estimating urban pollutant concentrations. Here we propose an enhanced ML 
approach for predicting urban ambient PM2.5 concentrations that hybridizes cascade and PCA methods to reduce 
the dimensionality of the data-space and explore nonlinear effects between variables. We test the approach using 
different durations of time series air quality datasets of hourly PM2.5 concentrations from three air quality 
monitoring sites in different urban neighborhoods in Chicago, IL to explore the influence of dynamic human- 
related factors, including mobility (i.e., traffic) and building occupancy patterns, on model performance. We 
test 9 state-of-the-art ML algorithms to find the most effective algorithm for modeling intraurban PM2.5 varia
tions and we explore the relative importance of all sets of factors on intraurban air quality model performance. 
Results demonstrate that Gaussian-kernel support vector regression (SVR) was the most effective ML algorithm 
tested, improving accuracy by 118% compared to a traditional multiple linear regression (MLR) approach. 
Incorporating the enhanced approach with SVR algorithm increased model performance up to 18.4% for year
long and 98.7% for month-long hourly datasets, respectively. Incorporating assumptions for human occupancy 
patterns in dominant building typologies resulted in improvements in model performance by between 4% and 
37%. Combined, these innovations can be used to improve the performance and accuracy of urban air quality 
prediction models compared to conventional approaches.   

1. Introduction 

Exposure to ambient air pollution contributes substantially to the 
global burden of death and disease (WHO | Air pollution; Cohen et al., 
2017). In particular, exposure to PM2.5, or the mass concentration of 
particles smaller than 2.5 μm in aerodynamic diameter, is a major 
contributor to the adverse health effects associated with exposure 
ambient air pollution, leading to an estimated 8.9 million deaths 

globally in 2015 (Burnett et al., 2018). Urban areas are important con
tributors to human exposure to outdoor air pollution, as concentrations 
of many airborne pollutants (including PM2.5) are present at elevated 
levels in cities worldwide (Mage et al., 1996; Mayer, 1999), and over 
half of the global human population lives in urban areas (Overview. 
World Bank n.d., 2019). Monitoring and predicting urban air pollutant 
concentrations are key components in any urban air quality manage
ment plan (Gulia et al., 2015). 
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Governments and researchers around the world monitor ambient 
concentrations of PM2.5 and other airborne pollutants for regulatory and 
monitoring purposes (e.g., the U.S. Environmental Protection Agency 
(EPA) (ntegrated Scienc, 2009; Solomon and Sioutas, 2008; Solomon 
et al., 2014)). However, ambient monitoring networks require signifi
cant investments in infrastructure (Yuan et al., 2012) and still leave 
spatiotemporal gaps in air pollution data – including in both rural and 
intraurban locations – that need to be filled for accurate human exposure 
assessments. Approaches to fill these gaps commonly include satel
lite/remote sensing (van Donkelaar et al., 2010, 2014; Ma et al., 2016; 
Lin et al., 2018), atmospheric physics/chemistry simulations (Zhang 
et al., 2018; Fann et al., 2012, 2018; Liu et al., 2010; Chemel et al., 
2010), networks of low-cost monitors (Gao et al., 2015; Moltchanov 
et al., 2015), and statistical models (Singh et al., 2012, 2013; Karppinen 
et al., 2000a, 2000b; Elbir, 2003), or combinations of one or more of 
these methods (van Donkelaar et al., 2016). 

In particular, numerous statistical prediction models with a variety 
of approaches and explanatory variables have been used to estimate 
ambient concentrations of PM2.5 and other pollutants, including within 
urban areas. Statistical prediction models for urban air quality 
commonly have two major applications. The first is to explore predictors 
of time-series data from actual monitoring stations (Zhai and Chen, 
2018; Karimian et al., 2019; Liu et al., 2019; Biancofiore et al., 2017; 
Russo et al., 2015; He et al., 2014; Yang et al., 2018); the second is to use 
predictive models such as land use regression (LUR) to estimate air 
quality in locations for which there is no air quality information avail
able (Dons et al., 2013; Ryan and LeMasters, 2007; Hoek et al., 2008; 
Jerrett et al., 2005; Eeftens et al., 2012). The focus of this work is on the 
first application. 

Statistical prediction models for urban air quality have generally 
considered meteorological factors as exploratory variables (e.g., (Chen 
et al., 2017; Hou and Wu, 2016; Yousefian et al., 2020)), in addition to 
other factors such as auxiliary pollutants (i.e., co-pollutants occurring at 
the same time and space) (Biancofiore et al., 2017; Russo et al., 2015), 
mobility-related factors (Nyhan et al., 2019; Cyrys et al., 2003; Fan 
et al., 2009), and demographic factors (Burke et al., 2001; Chowdhury 
et al., 2018; Isukapalli et al., 2013). A limited number of studies have 
also included factors that attempt to characterize local emissions from 
building infrastructure as predictor variables to estimate local PM2.5 
concentrations. For example, the number of bedrooms, fireplaces, and 
kitchens in residences (Masiol et al., 2018) or the density of oil-burning 
boilers (Clougherty et al., 2013), both of which could conceivably ac
count for local combustion emissions from buildings to local ambient air 
via exfiltration and/or exhaust ventilation. However, to date, 
building-related factors have typically been considered as static spatial 
values rather than temporal values, although they likely vary with 
human activity patterns in and around buildings. One of the aims of this 
study is to test the effectiveness of incorporating dynamic 
building-related factors such as human activity patterns for improving 
urban air quality prediction models. 

Dynamic building-related factors that account for indoor human 
activity patterns and their impacts on local ambient air quality may be 
important to consider since people spend nearly 90% of their time in
doors (Klepeis et al., 2001) and they generate numerous indoor pollut
ants through both combustion and non-combustion sources that could 
conceivably contribute to local intraurban ambient PM2.5 concentra
tions. For example, one recent study demonstrated that indoor emissions 
of volatile organic compounds (VOCs) from consumer products 
contribute substantially to local outdoor air quality, as exfil
trated/exhausted VOCs migrate from buildings to outdoors and act as 
precursors to PM2.5 formation (McDonald et al., 2018). Other studies 
have similarly demonstrated that pollutants such as semi-volatile 
organic compounds (SVOCs) (e.g., polybrominated diphenyl ethers, or 
PBDEs) migrate from building ventilation systems (Björklund et al., 
2012) and contribute to ambient PM2.5 concentrations (Li et al., 2015). 
Given that one recent study estimated that 46% of the human-origin 

PM2.5 in U.S. cities remains unaccounted for even after considering 
traffic, industry, domestic fuel combustion, and natural sources (Kar
agulian et al., 2015), exploring the role of dynamic building-related 
factors such as indoor human activity patterns may provide further in
sights into the contributors to urban air pollution. 

Additionally, until recently, statistical prediction models for urban 
air quality have primarily involved linear models and large-dimensional 
data. More recently, various scientific communities have demonstrated 
that artificial intelligence (AI) approaches, and more specifically ma
chine learning (ML) approaches, can help improve model accuracy and 
precision in a wide range of applications (e.g., (Wang et al., 2019; Phi
libert et al., 2013)). However, in large-dimensional data, correlations 
between explanatory variables frequently occur. Further, 
large-dimensional data reduces the predictive model-performance for 
ML approaches, particularly those of non-linear algorithms (e.g., Arti
ficial Neural Networks (ANNs) and Support Vector Regressions (SVRs)), 
as these algorithms already demand high-computational capacity to be 
executed. Thus, finding meaningful low-dimensional data-structures 
that are embedded in their high-dimensional observations can help 
reduce correlation effects and increase the accuracy and performance of 
these models. 

Traditionally, principal component analysis (PCA) is used to reduce 
the dimensionality of the data (Björklund et al., 2012; Li et al., 2015) 
and to embed the data in a low-dimensional input space that best pre
serves their variance as captured in the original high-dimensional data. 
PCA explores correlations between variables and replaces them with 
newly created variables, which minimizes correlation effects. However, 
nonlinear patterns are invisible to PCA (Tenenbaum, 2000). Incorpo
rating ML algorithms into PCA and cascading are both approaches to 
reduce the dimensionality of the data-space, particularly for ML-based 
algorithms (Tenenbaum, 2000). To our knowledge, the cascading 
approach has not been used for detecting correlations between 
co-variates yet. Cascade approaches are primarily implemented for two 
purposes: (i) performance (low-execution time) and (ii) accuracy (pre
cision). To expedite performance, the cascade approach partitions the 
data-space into smaller portions based on either reducing 
data-dimensionality (Kramer, 2015) or reducing the number of obser
vations (Graf et al, ; You et al., 2015; Lujan, 2012). To improve accuracy, 
the data-space is partitioned into smaller sub-categories by which mul
tiple response variables are predicted in parallel and the obtained pre
dicted values for each sub-category are used as inputs for the core 
algorithm to layout the overall response (Garg and Gupta, 2008). In 
addition, the latter approach can also be applied to predict and add new 
variables into the n-dimensional data-space in which the n+1 dimen
sional data-space predicts the overall response. This approach was 
proposed by (Franceschini et al., 2018) in which an ANN algorithm was 
used with a newly created binary variable. However, to the best of our 
knowledge, a method that integrates the power of ML, PCA, and cascade 
methods together by which the model performance and accuracy are 
both improved, also considering correlation issues, has not been 
investigated. 

It is believed that non-rule-based ML algorithms such as ANNs, SVRs, 
and k-nearest neighbors (k-NNs) are ‘black-box’ (Olden et al., 2004) 
approaches, such that explaining their results is challenging (Greenwell, 
2017). There exist, however, several methods to ‘illuminate’ (Beck, 
2018) the ‘black-box’, in which model-agnostic methods are used to 
implement such a task, regardless of what algorithm is applied. The 
Partial Dependence Plot (PDP) approach introduced by (Friedman, 
2001) is one of those approaches that provides an opportunity to eval
uate interactions between predictor variables. PDPs display how the 
average effect of a predictor changes when a predictor is changed over 
the range of variation by considering other predictors at their constant 
values. PDP is applied on the user’s fitted data, regardless of what al
gorithm fitted that data. The Individual Conditional Expectation (ICE) 
(Goldstein et al., 2013) is a new model-agnostic approach that is based 
upon the PDP method but that displays the impacts of each instance of a 
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predictor separately. 
With this background on urban air quality and statistical prediction 

models, the objectives of this research are to (1) bring the power of AI 
into urban air quality models, with a focus on hybridizing cascade ML 
algorithms and PCA approaches for predicting intraurban PM2.5 con
centrations, and (2) apply these approaches to explore the influence of 
dynamic human-related factors, including mobility (i.e., traffic) and 
building occupancy patterns, on model performance. The workflow 
entails four main steps: (i) testing multiple state-of-the-art ML algo
rithms to find the most effective algorithm for modeling intraurban 
PM2.5 variations; (ii) incorporating PCA and cascade ML approaches 
together into a single model to improve accuracy of predictions; (iii) 
incorporating dynamic building-related factors that could conceivably 
account for emissions from buildings and occupants as indoor sources to 
the local ambient environment (i.e., improving explanatory variables); 
and (iv) explaining the relative importance of all sets of factors on 
intraurban air quality model performance. We hypothesize that these 
innovations will improve the performance and accuracy of urban air 
quality prediction models compared to conventional approaches. We 
test this approach using time series air quality datasets from three air 
quality monitoring sites in different urban neighborhoods in Chicago, IL. 

2. Materials and methods 

2.1. Data sources, sampling site, and dataset processing 

Three air pollution monitoring locations in Chicago, IL, were selected 
in this study: one located in Logan Square, one in the Loop (Downtown), 
and one in the Ashburn neighborhood. The dominant morphology of 
these neighborhoods is residential, commercial, and residential- 
industrial properties, respectively (Fig. 1). This study uses two 
different data sources due to the lack of reliable high resolution outdoor 

pollutant data in all locations. First, air quality data for the Loop location 
were obtained from a weeklong study of several ambient pollutants in 
the outdoor ventilation air intakes along the height of a tall building 
conducted in June 2017, including size-resolved particulate matter, 
which were used to estimate PM2.5 mass concentrations (Azimi et al., 
2018). Only the 2nd floor (closest to ground-level) data were used from 
this location. Second, a full year of hourly air quality data in 2017 for the 
Logan Square and Ashburn neighborhoods were obtained from the U.S. 
EPA’s AirData database (AirData website File Down, 2019). 

We selected four categories of explanatory variables for predicting 
intraurban PM2.5 concentrations at each site, including (i) meteorolog
ical, (ii) human activity patterns, (iii) daytime/calendar, and (iv) 
auxiliary air pollutants including ozone (O3) and nitrogen oxides (NOx), 
each of which is described below. Table 1 lists all variables that were 
used in this research. Meteorological variables comprise local wind 
speed, wind gust, temperature, relative humidity, atmospheric pressure, 
and solar radiation obtained from local Personal Weather Stations 
(PWS) on the Weather Underground portal (Local Weather Forecast and 
N, 2019). The closest PWS to each air pollution monitoring site for each 
neighborhood was selected (including KILCHICA114 for Logan Square 
and KILOAKLA6 for Ashburn). Human activity pattern factors comprise 
those that influence mobility and building occupancy. Wind “gust” was 
used to incorporate a measure of the transient (instantaneous) behavior 
of the wind (i.e., duration ≤ 20 s and speed ≥ 8.2 m/s), in addition to its 
continuous speed (i.e., “wind speed”), in part because of recent litera
ture demonstrating that wind gust is associated with an increase in PM2.5 
concentrations a decrease in visibility (Kelley et al., 2020). Wind di
rection was not included because of considerable missing values for this 
factor in the databases that we retrieved (and thus remains a limitation 
of this work). Mobility factors include hourly-averaged traffic conges
tion and speed of traffic obtained from the Illinois Department of Trans
portation (Traffic Count Database Sy, 2019) and Chicago Traffic 

Fig. 1. Maps of dominant urban morphology across three neighborhoods in Chicago, including Logan Square, Loop, and Ashburn. RStudio was used for mapping out 
geo data. Image source: Google Street View (GSV), 2019. Red circles show the location of PM2.5 monitoring locations. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web version of this article.) 
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Tracker-Congestion Estimates by Segments-2011-2018 (Chicago Traffic 
Tracker), respectively. 

Prototypical hourly occupancy patterns for commercial and resi
dential apartment buildings were extracted from the U.S. Department of 
Energy (DOE) Commercial Prototype Building Models (Commercial 
Prototype Buil, 2019; Deru et al., 2011). Prototypical hourly occupancy 
patterns for single- and low-rise multi-family residential buildings were 
extracted from the DOE Residential Prototype Building Models (Resi
dential Prototype Bui, 2019). These datasets have been used in many 
previous studies to support energy consumption analysis across building 
types (Sohn and Dunn, 2019) and archetypes used in urban scale energy 
modeling (e.g., (Heidarinejad et al., 2017; Heiple and Sailor, 2008)). 
These patterns are considered nationally representative and do not 
necessarily represent actual data from our specific sites; however, they 
represent a reasonable first approach to incorporate dynamic building 
occupancy factors in urban air quality modeling. The occupancy profiles 
used herein comprise discrete numbers between 0 and 1, while traffic 
profiles are based on continuous values. 

Similar to spatiotemporal models such as land use regression (LUR) 
models, we defined buffer zones for building and traffic-related factors 
separately to investigate their local impacts on outdoor PM2.5 concen
trations across those zones. Buffer radii of 1000 m and 100 m were 
defined for local building occupancy profiles and traffic profiles, 
respectively. The selected buffer radii for occupancy profiles were 
informed by a recently developed LUR model for estimating hourly 
PM2.5 concentrations in Monroe County, New York, in which the radii 
were calculated ranging from 50 to about 2000 m for multiple (static) 
building-related factors (Masiol et al., 2018). We assumed a 1000 m 
radius, which is in the middle of that range. The predominant building 
typology across the defined buffer zone was then captured from the 
Chicago Building Footprint dataset (Building Footprints (curr, 2018) in 
order to define the predominant occupancy profile for that zone. 
Meanwhile, traffic counts and vehicle speed data were averaged based 
on hourly traffic congestion data for all street nodes within the 100 m 
buffer (Masiol et al., 2018; Weichenthal et al., 2016) to be used as hourly 
local traffic profiles for the zone. 

Daytime/calendar variables comprised hour-of-day (24 h), day-of- 
week (seven days), month-of-year, and day-of-month. Each was 
latently available at all-time series. Holidays (e.g., New Year’s and the 

Fourth of July) were excluded from datasets because of anomalous 
firework-related pollutant sources. For weekly and monthly analysis, 
day-of-month and month-of-year were excluded, as there are no repe
titions of these factors during the time duration. For seasonal analysis, 
January, February, and December were assumed as winter; March, 
April, and May as spring; June, July, and August as summer; and 
September, October, and November as fall seasons (Zhang et al., 2015; 
Xu et al., 2017; Di et al., 2016). The lubridate package from CRAN library 
(Grolemund and Wickham, 2011) in R software was applied to generate 
values for this category of predictors. 

We also used ambient concentrations of two auxiliary pollutants (i.e., 
co-pollutants) – O3 and NOx – in some models to investigate two 
potentially important mechanisms: (a) the impacts of these pollutants 
parallel to other explanatory variables, and (b) the relationship between 
these pollutants and human activity patterns. NOx and O3 were chosen 
as auxiliary explanatory variables because (1) they are both known 
precursor gaseous components for the formation of PM2.5 (Anenberg 
et al., 2012) (albeit not the only precursor components) and (2) they are 
the only co-pollutants for which we had access to data from local reg
ulatory monitoring networks. These two co-pollutants were tested spe
cifically on the July and December datasets in detail. Additionally, 
regarding relationships between these pollutants and human activity 
patterns, a recent study indicated that a portion of methane (CH4), 
which is a leading ozone precursor (von Schneidemesser et al., 2015), in 
cities is emitted from intra-building natural gas distribution and end-use 
facilities (Fischer et al., 2018). These emissions occur more from resi
dential buildings than commercial buildings (Saint-Vincent and Pekney, 
2019). Another recent study demonstrate that methane leakage in 
buildings in the U.S. cities is likely twice as what has been previously 
assumed (Perkins, 2019). Therefore, we hypothesize that inclusion of 
these two co-pollutants could conceivably improve predictions of local 
ambient PM2.5 concentrations, both directly and indirectly. 

2.2. Testing various ML algorithms 

Using these datasets, we first tested 9 state-of-the-art ML algorithms 
to find the most effective algorithm for predicting intraurban PM2.5 
concentrations using regular models that do not reduce correlation im
pacts between variables (i.e., prior to including enhanced approaches, 
which is explored later). The logic for selecting these 9 ML algorithms is 
as follows. 

ANN has received significant attention in the literature to be applied 
for developing predictive models. We tested three different ANN algo
rithms: Multi-layer perception (MLP) with a single hidden layer opti
mized by the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm 
(Venables and Ripley, 2002); MLP with multiple hidden layers opti
mized by resilient backpropagation algorithm (Fritsch et al., 2019); and 
radial-basis (Gaussian) kernel (RBF) ANN. The support vector machine 
(SVM) with polynomial and Gaussian kernels (Meyer et al., 1071), 
k-nearest neighbor (kNN) with Gaussian kernel (Grolemund and Wick
ham, 2011), and rule-based techniques including regression tree (CART) 
(Terry and Atkinson, 2018), random forest (RF) (von Schneidemesser 
et al., 2015), and gradient boosting machine (GBM) (Friedman, 2001; 
GreenwellBradley et al., 2019) were also implemented. A brief defini
tion and differences between these algorithms can be found in (Abba
sabadi and Ashayeri, 2019). We used grid search optimization method to 
tune the hyper-parameters for each of these ML algorithms in order to 
avoid a pre-deterministic parameter-selection approach. To this end, we 
defined a wide range of variance for each of parameters, as described 
later. 

SVM, ANN, and kNN are known as non-linear and black-box ap
proaches because of their sophisticated intra-processing tasks and 
resulted weights, while the rule-based techniques provide the simulation 
process due to their simple if/else-based functions. RF and GBM are 
based on the ensemble of many trees, which enable them to provide less 
biased results than a single tree. The multiple linear regression (MLR) 

Table 1 
Factors used for predicting intraurban PM2.5 concentrations.  

Category Variable Abbreviation Data type Unit 

X1: 
Meteorological 

Wind speed Ws Continuous m 
s− 1 

Wind gust Wg Continuous – 
Temperature T Continuous ◦C 
Relative humidity RH Continuous – 
Atmospheric 
pressure 

P Continuous Pa 

Solar radiation Sol Continuous W 
m− 2 

X2: Human activity patterns 
X2-A: Mobility Hourly traffic speed 

profile 
Tspeed Continuous km 

h− 1 

Hourly traffic count 
profile 

Tcount Continuous – 

X2-B: Building 
occupancy 

Hourly residential 
occupancy profile 

Res Discrete – 

Hourly commercial 
occupancy profile 

Comm Discrete – 

X3: Daytime/ 
Calendar 

Hour of Day Hour Discrete – 
Weekdays Weekday Discrete – 
Day of moth Day Discrete – 
Month of Year Month Discrete – 

X4: Auxiliary 
pollutants 

Nitrogen oxides NOX Continuous ppm 
Ozone O3 Continuous ppm 

Y: Response 
variable 

PM2.5 concentrations PM2.5 Continuous μg 
m− 3  
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algorithm was also used as a traditional predictive approach to compare 
the effectiveness of this algorithm with those of ML-based approaches. 

To first select the most effective algorithm out of this pool of 9 al
gorithms, we tested each algorithm for predicting hourly PM2.5 con
centrations across multiple time horizons (including month-long, 
season-long, and year-long hourly data) in our two larger datasets: 
Logan Square and Ashburn. This yielded a total of 34 datasets for 
spatiotemporal application and comparision (i.e., 24 month-long, 8 
seasonal, and two yearlong datasets for each of the two locations, Ash
burn and Logan Square). The model structure utilized in this section 
included all possible explanatory factors shown in Table 1, with the 
exception of auxiliary pollutants (i.e., all variables in the meteorolog
ical, daytime/calendar, and human activity patterns categories). This 
model structure is later referred to as “model-7” in Table 3. We averaged 
all R2 results obtained from these approaches applied across all time 
horizons. We also compared model performance between MLR and the 
best ML algorithm to highlight the potential improvements achievable 
by ML approaches. 

2.3. Development of an enhanced predictive approach with ML algorithms 

Next, we developed a enhanced approach for predicting hourly PM2.5 
concentrations across neighborhoods with ML algorithms. In the 
enhanced approach, the variance inflation factor (VIF) test (Allison, 
1999) was implemented to detect multicollinearity between each pair of 
explanatory variables. Multi-collinearity is an issue in data simulation 
by which one explanatory variable is predicted linearly with a signifi
cant degree of accuracy by another explanatory variable. The obtained 
results under multi-collinearity can be biased in spite of likely im
provements in the model. The VIF test is implemented before simulating 
predictive models either by statistical or ML-based regression algorithms 
(Karimian et al., 2019). VIF lesser or equal to 5 (Masiol et al., 2018) was 
used to exclude collinear variables prior to subsampling datasets. 

In addition to the VIF test, a quasi PCA approach with ML algorithms 
was developed to create a new variable instead of a pair of correlated 
variables. This approach was applied when the maximum coefficient of 
correlation (R) between the same sub-category of predictors and be
tween the different categories of predictors exceeded 0.6 and 0.95, 
respectively, with a p-value lower than 0.05 (Dons et al., 2013). This 
approach was used to replace correlated variables with a new variable 
rather than omitting them. In doing so, a pair of correlated variables 
were placed as the predictor and response with shuffling roles; the op
tion with the highest value for R was selected to define the ultimate 
combination for the selected sub-category. This enables keeping the 
influence of all predictors in the model while removing correlation ef
fects. Since the datasets used herein are time series, the day
time/calendar predictors were added in each sub-category. An 
automation code was scripted in R software to implement such a process 
in a single execution. 

Fig. 2 illustrates the workflow of the enhanced model development 
for predicting intraurban PM2.5 concentrations. In this figure, Xpre de
notes non-processed predictors; Xprep denotes newly created variables; 
Final Dataset denotes the final structure of data adding newly created 
variables and excluding correlated and collinear variables; Y denotes the 
final output (i.e., intraurban PM2.5 concentrations); C-variable denotes 
the new variables that are created instead of those variables that are 
correlated for each category; D1 to Dn denotes the final datasets for each 
category that include combinations of X and C variables that remove 
collinearities and correlations in all sub-categories; and D is the final 
dataset merging D1 to Dn that removes collinearities and correlations 
between different categories of both X and C variables. 

For comparing the performance of enhanced vs. regular ML ap
proaches, we used multiple time horizons of hourly datasets, including 
month-long, season-long, and year-long datasets separately for Ashburn 
and Logan Square neighborhoods (longer datasets were not available in 
the Loop location), both with and without auxiliary pollutants for 

Ashburn (auxiliary variables were only available for Ashburn datasets). 
Table 2 shows the pseudo-code used for executing the proposed 
workflow. 

2.4. Model sub-sampling, validation, and evaluation 

In order to avoid biasing results and over-fitting issues in the appli
cation of the ML techniques, a 10-repeated 5-fold cross-validation (10 ×

5CV) method was applied (Li et al., 2006). The datasets for all ML ap
proaches were divided into two parts, training sets (80%) and test sets 
(20%), using a random subsampling approach. The process was repeated 
until the histogram of both training and test sets had approximately the 
same ratio per bins, in which the number of bins was set to be selected 
automatically. The hist() function was used in RStudio to implement this 
process. The VIF test and the subsampling approach was used for all 
models. 

We applied the mean absolute error (MAE), root mean square error 
(RMSE), and coefficient of determination (R2) as the most common-use 
metrics to compare the effectiveness of different models for urban air 
quality prediction (Venables and Ripley, 2002). The MAE shows the 
degree of difference between the predicted and the actual values. The 
RMSE is a relative error metric that focuses on the impact of extreme 

Fig. 2. The workflow for developing enhanced models for predicting intra
urban PM2.5 concentrations. 
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values and represents the performance of a linear model based on the 
model-fitting approach. Theoretically, RMSE provides a larger value 
than MAE for the same problem (Chai and Draxler, 2014). The metrics 
are formulated as the following Equations (1-3): 

MAE=
1
k

∑k

i=1

⃒
⃒ypred, i − yact, i

⃒
⃒ (1)  

RMSE=
1
k

∑k

i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑k

i=1

(
ypredt, i − yact, i

)2

k

√

(2)  

R2 = 1 −

∑k
i=1

(
ypred, i − yact, i

)2

∑k
i=1

(

yact, i − yact

)2 (3)  

Where yact, i and ypred, i denote the actual and predicted PM2.5 concen
tration for ith observation, yact denotes the mean PM2.5 concentration, 
and k denotes the total number of observations. 

2.5. Inter-model sensitivity analysis 

To address the second objective of this work (i.e., exploring the 
impacts of including human activity patterns in urban air quality 
models), we conducted an inter-model sensitivity analysis in which the 
best performing ML algorithms from Section 2.2 were applied to various 
time horizons of our three air quality datasets using both regular and 
enhanced approaches (Section 2.3). For both approaches, we imple
mented a variable selection process that allowed for exploring the in
fluence of including or excluding individual explanatory variables and/ 
or sets of explanatory variables. We implemented this analysis for un
derstanding the performance of models based on (i) complexity of in
clusion/exclusion of factors and the correlation effects between co- 
variates, and (ii) exploring the impacts of human activity patterns 
based on the dominant typology of buildings and local traffic patterns in 
each neighborhood. 

Table 3 summarizes the developed models, including a total of 10 
regular models that exclude auxiliary pollutants and 11 regular models 
that include auxiliary pollutants (Pollutant). Each model is based on 
different combinations of predictors and is defined by adding and sub
tracting predictor variables. A study by (Levy et al., 2010) implemented 
a similar approach for inter-model sensitivity analysis for predicting 
intraurban PM2.5 concentrations by adding and subtracting human ac
tivity patterns (traffic profiles). For the models that excluded auxiliary 
pollutants, we first developed model-0, which includes only natural 
(Meteorological, or Met) factors. Model-1 includes only the hour-of-day 
(Hour) factor and Model-2 includes both meteorological and hour fac
tors. Model-3 adds the weekday factor into model-2. We refer to model-3 
as the “base model,” without human activity factors, because this is the 
simplest model that is used for predicting hourly PM2.5 concentrations 
for datasets no longer than a month horizon. In model-4, mobility fac
tors, including traffic count and traffic speed data, are added to the base 
model (model-3). Model-5 adds commercial building occupancy 
(Comm) into the base model, while model-6 adds Comm into model-4. 
Model-7 includes all available variables in the model, adding residen
tial building occupancy patterns (Res) to model-6. Model-8 subtracts 
Comm from the model and keeps only residential building occupancy 
pattern (Res) as the occupancy factor, and model-9 subtracts mobility 
from model-8 and keeps Res as the sole human activity pattern in the 
model. For the models that included auxiliary pollutants (O3 and NOx), 
we simply added co-pollutant concentrations (where available; i.e., 
Ashburn only) as an additional explanatory variable to each of the 10 
models constructed without auxiliary pollutants, and also added an 11th 
model that included only co-pollutants as predictors. We added O3 and 
NOx separately to explore the significance of these pollutants in 
explaining local PM2.5 concentrations in the predictive models. 

Next, we developed 6 additional enhanced models that exclude 
auxiliary pollutants and 8 additional enhanced models that include 
auxiliary pollutants (Table 4). In the enhanced models without auxiliary 
pollutants, we created three new variables in the time series data that 

Table 2 
Pseudo-code used for automating the cascading ML algorithm and replacing 
correlated variables with newly created variable.  

for (i in vector X (i = 1:n, n = number of categories without daytime/calendar 
category) {. for (j in vector X (j = 1:m, m = number variables for each category) 

Step A: intra-category 
do train [Xj] over [Xj+1 & ADaytime/calendar] factors by a 10 repeated 5-fold cross 

validation, 
do test [Xj] over [Xj+1 & ADaytime/calendar], 
do paste (R) for both train and test sets. 

if Rtest ≥ 0.60 and p-value<0.05 (in the same category of variables) 
do replace both [Xij] and [Xi(j+1) & XDaytime/calendar] togather by predicted value for 
test set, 
do name the trained new variable as Cs-tr-p (p = 1:p, p ∈ N, p ≥ 1)  
do replace both [Xij] and [X i(j+1) & XDaytime/calendar] togather with trained value for 
train set, 
do name the predicted new variable as Cs-ts-p (p = 1:k, p ∈ N, p ≥ 1)  
do merge Cs-tr-p and Cs-ts-p 

do name it Csp 

Step B: inter-category 
do train [Xij] over [Xi(j+1) & ADaytime/calendar] factors by a 10 repeated 5-fold cross 

validation, 
do test [Xij] over [Xi(j+1) & ADaytime/calendar], 
do paste (R) for both train and test sets. 

if R ≥ 0.95 and p-value<0.05 (between different category of variables), 
do replace both [Xij] and [X(i+1)j & XDaytime/calendar] togather by predicted value for 
test set, 
do name the trained new variable as Cd-tr-p (q = 1:q, q ∈ N, q ≥ 1)  
do replace both [Xij] plus [X(i+1)j & XDaytime/calendar] togather with trained value for 
train set, 
do name the predicted new variable as Cd-ts-p (q = 1:k, q ∈ N, q ≥ 1)  
do merge Cd-tr-q and Cd-ts-q 

do name it Cdq 

do merge Csp and Cdq with remaining factors and daytime/calendar variables as final 
dataset. do name final dataset as D 

do train D by a 10 repeated 5-fold cross validation, 
do test D, 
do paste (RMSE, MAE, R2, and adjusted R2 all in a single matrix) for both train and test 

sets 
stop 
}  

Table 3 
Developed models for inter-model sensitivity analysis based on the regular ML 
approach.  

Model Explanatory variables without 
auxiliary pollutants 

Explanatory variables with auxiliary 
pollutants 

0 Met Met, Pollutanta 

p n/a Pollutant 
1 Hour Hour, Pollutant 
2 Hour, Met Hour, Met, Pollutant 
3 Hour, Weekday, Met (Base 

Model) 
Hour, Weekday, Met, Pollutant (Base 
Model) 

4 Hour, Weekday, Met, Tcount, 
Tspeed 

Hour, Weekday, Met, Pollutant, 
Tcount, Tspeed 

5 Hour, Weekday, Met, Comm Hour, Weekday, Met, Pollutant, 
Comm 

6 Hour, Weekday, Met, Tcount, 
Tspeed, Comm 

Hour, Weekday, Met, Pollutant, 
Tcount, Tspeed, Comm 

7 Hour, Weekday, Met, Tcount, 
Tspeed, Comm, Res 

Hour, Weekday, Met, Pollutant, 
Tcount, Tspeed, Comm, Res 

8 Hour, Weekday, Met, Tcount, 
Tspeed, Res 

Hour, Weekday, Met, Pollutant, 
Tcount, Tspeed, Res 

9 Hour, Weekday, Met, Res Hour, Weekday, Met, Pollutant, Res  

a Pollutant = O3 or NOx separately. 
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combined the variables related to human activity patterns that had the 
highest correlations when treated individually: C1 was created as a 
combination of Tcount and Tspeed (i.e., traffic variables); C2 was 
created as a combination of Comm and Tspeed (i.e., traffic speed and 
commercial building occupancy patterns); and C3 was created as a 
combination of Res and Tspeed (i.e., traffic and residential building 
occupancy patterns). Daytime/calendar and meteorological data were 
kept as control variables (similar to the base model), and these addi
tional human activity pattern variables were added one by one to create 
additional models. In the enhanced models with auxiliary pollutants, we 
took a similar approach albeit with inclusion of co-pollutants for each 
model increment and with the addition of two additional models with 
one new variable (C4) that was created to remove correlations between 
O3, Sol, and Tcount variables. 

For the inter-model sensitivity analysis, we used the following 
datasets: (1) weeklong hourly datasets in June for all three neighbor
hoods (this was the only concurrent period for which data were avaiable 
at all locations) and (2) a full month of hourly data for June, July, and 
December each for Ashburn and Logan Square. These months were 
selected to be representative of summer and winter seasons, which are 
known to have very different contributors to ambient particulate matter 
concentrations (e.g., (Dons et al., 2013; Weichenthal et al., 2016; Tri
pathy et al., 2019; Tunno et al., 2016a)). In this analysis, we compared 
only among ML algorithms (i.e., we did not compare MLR vs. ML al
gorithms). Table 5 shows a matrix of datasets with their time horizons 
used for each neighborhood and the number of developed models used 
in the inter-model sensitivity analysis for each dataset. 

2.6. Intra-model sensitivity analysis 

To better understand each of the individual model approaches from 
Section 2.6, we also conducted an intra-model sensitivity analysis using 
a set of techniques to capture the relative influential factors for pre
dicting interurban air quality. The PDPs (Friedman, 2001) and ICE Plots 
(Goldstein et al., 2013) were used to handle such applications as they 
represent model-agnostic methods. This approach helps explain outputs 
(i.e., fitted response) from ‘black-box’ techniques better than 
within-model parameters and internal actions. ICE plots depict the 
heterogeneity of instances of a predictor over the fitted response vari
able and are more helpful when interactions between the predictors for 
which the PDP is calculated and the other predictors are not weak. By 
applying ICE plots and PDPs, we quantify variable importance (VI), 
which is based on a model-free approach. VI plots depict the relative 
magnitude of each predictor for the fitted response. We applied ICE plots 
averaged by PDP curves based on a method proposed by (Greenwell 
et al., 2018). This method identifies VI as the flatness of PDP curves in 
which the more flatter curves represent the lower relative VI for the 
interest predictor. In other words, the less interaction that a target 
predictor has with other predictors, the less influential role that variable 
plays in that model. The flatness of PDP curves was calculated using 
Equation (4): 

i(x1)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
k − 1

∑k

i=1

[

f1(x1i) −
1
k
∑k

i=1
f1(x1i)

]2
2

√
√
√
√ if x1is continous

[

​ maxi

(

f 1(x1i)

)

− mini

(

f 1(x1i)

)]/

4 if x1is categorical

(4)  

Where, i(x) denotes the flatness of the PDP curve per level of the stan
dard deviation of a target variable, f1 displays little variability, x1i de
notes the first observation for each level, and k denotes the total number 
of data points per level. We used the ICEbox package in CRAN library to 
plot the ICE and PDP curves, and then, manually quantified the “flat
ness” of PDP curves to quantify VI. This study used the ggplot2 package 

Table 4 
Developed models for inter-model sensitivity analysis based on the enhanced ML 
approach.  

Model Explanatory variables without 
auxiliary pollutants 

Explanatory variables with 
auxiliary pollutants 

10 Hour, Weekday, Met, C1 Hour, Weekday, Met, Pollutant, 
C1 

11 Hour, Weekday, Met, Comm, C1 Hour, Weekday, Met, Comm, 
Pollutant, C1 

12 Hour, Weekday, Met, Res, C1 Hour, Weekday, Met, Res, 
Pollutant, C1 

13 Hour, Weekday, Met, C2 Hour, Weekday, Met, Pollutant, 
C2 

14 Hour, Weekday, Met, Res, C2 Hour, Weekday, Met, Res, 
Pollutant, C2 

15 Hour, Weekday, Met, C3 Hour, Weekday, Met, Pollutant, 
C3 

16 n/a Hour, Weekday, Met, C3, C4 
17 n/a Hour, Weekday, Met, NOx, C3, C4 

C1 = Tcount & Tspeed; C2 = Comm & Tcount; C3 = Res & Tspeed; Pollutant =
O3 or NOx; C4 = (O3 & Sol) & Tcount. 

Table 5 
Datasets with their available variables and time horizons for each neighborhood 
and the number of models developed per dataset for inter-model sensitivity 
analysis based on the regular ML approach.  

Duration Neighborhood Dataset with and 
without auxiliary 
pollutants 

Number of 
models 

Weeklong (in June 
2017) 

Loop without 10 
Ashburn without 10 
Logan Square without 10 

Month-long (June, 
July, December 
2017) 

Ashburn without & with 10,11 
Logan Square without 10  

Table 6 
Average of R2 for the 34 hourly datasets without auxiliary variables.  

Model Technique Algorithm R-Package (CRAN 
Library) 

R2 (test 
set) 

a SVR Gaussian kernel e1071 0.577 
b GBM Gaussian distribution Gbm 0.545 
c kNN Gaussian kernel KernelKnn 0.505 
d ANN deep MLP: resilient BP 

with 3-hidden layers 
Neuralnet 0.487 

e RF General randomForest 0.479 
f ANN Gaussian kernel Kernlab 0.443 
g SVR Polynomial kernel (deg. 

= 4) 
e1071 0.434 

h ANN MLP: BFGS with single 
hidden layer 

Nnet 0.391 

i TREE General Rpart 0.322 
j MLR General Base 0.208 

Model Hyper Parameter per ML Algorithm 

a C = 2 ^ [-15: 10], γ = 2 ^ [-15:4], ε = [0, 1, seq = 0.1] 
b Number of Trees = 5000, Interaction Depth = [2, 10, seq = 1], Shrinkage =

{0.1, 0.01, 0.001} 
c K = [2, |√number of Variables|, seq = 2] 
d Neurons = {L1 = [2, |2/3 * number of Variables|, seq = 1], L2 = 3, L3 =

L1/}, Decay = {0.1,0.5} 
e Number of Trees = 5000 
f σ == 2 ̂  [-8: 8], Units = [2, |2/3 * number of Variables|, seq = 1], Decay =

{0.1,0.5} 
g Degree = {3,4}, C = 2 ^ [-8, − 4, − 2, 0, 1, 2, 4, 8], γ = 2 ^ [-15:4] 
h Neurons = [2, |2/3 x number of Variables|, seq = 1] 
i Min Split = {5,10}, Min Depth = [2,10, seq = 1], cp = {0.01, 0.001. 

0.0001}  
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in R library to visualize bar plots of the relative VIs (Wickham, 2009). 

3. Results and discussion 

3.1. The most effective ML algorithms 

Table 6 (top) shows model performance (R2) from the 9 initially 
tested ML algorithms (labeled as model-a through i) as well as the MLR 
model (model-j) applied to the 34 datasets of hourly data (i.e., 24 
month-long, 8 seasonal, and two yearlong) for Logan Square and Ash
burn, as described in section 2.2. The results suggest that Gaussian 
kernel SVR (model-a), Gaussian distribution GBM (model-b), and 
Gaussian-kernel kNN (model-c) were the most effective models for 
predicting PM2.5 concentrations. These three Gaussian kernels based 
algorithms explained PM2.5 concentrations with 177.4%, 162.0%, and 
142.8% higher accuracy in terms of R2, respectively, compared to the 
MLR model as the conventional regression approach. Further, the results 
suggest that these three models, which are based on Gaussian kernels, 
can provide higher accuracy than the models that are built upon poly
nomial and linear functions for handling urban air quality problems. The 
Gaussian-kernel SVM is an approach that could reasonably be a proper 
choice in selecting an ML technique for solving problems and can 
outperform ANNs if its hyper-parameters (C, γ, ε) are appropriately 
selected (Hassan et al., 2010; Hsu et al., 2003). Additionally, it has been 
reported that the performance of SVRs in predicting air pollution in 
urban areas outperforms neural networks (Lu and Wang, 2005). Table 6 
(bottom) shows the variance of hyper-parameters per algorithm in 
which values were automatically tuned through the grid-search opti
mization approach to obtain results with no predeterministic selection 

approach. 
Moreover, the Gaussian kNN algorithm (model-c) has shown its 

effectiveness for predicting urban scale data, which is superior to the 
Tree, RF and MLP algorithms (Abbasabadi et al., 2019). Further, the 
results suggest that the ANN model with a deep MLP approach (mod
el-d), with three hidden layers, is more effective than the RF algorithm. 
This model, which was optimized by the Resilient Back Propagation 
algorithm, showed higher performance relative to the ANN model based 
on the Gaussian kernel algorithm (model-f) and the MLP-based ANN 
with BFGS optimization (model-h) (about 9.9% and 24.5% higher, 
respectively, based on the R2 metric). The SVR model with the poly
nomial kernel (model-g) was found to be more effective than BFGS 
(model-h). Thus, based on these results, we kept only the kernel SVM 
algorithm for developing regular and enhanced predictive models 
moving forward. 

3.2. Evaluating enhanced vs. regular approaches 

Table 7 shows results of model performance (R2) obtained from 
regular and enhanced SVR approaches for hourly PM2.5 prediction 
applied to the month-long, season-long, and year-long datasets in both 
Ashburn and Logan Square, both with and without auxiliary explanatory 
variables, including NOx and O3 as co-pollutants where available (i.e., 
Ashburn). Model-7 in Table 3 is used for each comparison in Table 7. 
Several key results are illustrated. 

First, across all durations of datasets in both locations, model per
formance for predicting hourly PM2.5 concentrations improved with 
increasing model complexity, with R2 values ranging from 0.03 to 0.40 
for MLR applied across all time horizons, increasing to 0.49–0.67 for 

Table 7 
Model performance (R2) obtained using MLR, regular SVR, and enahnced SVR approaches predicting hourly PM2.5 concentrations across multiple time horizons, 
including month-long, season-long, and year-long data, in Ashburn and Logan Square in 2017. Model-7 in Table 3 is used for each comparison.  

R2 for hourly PM2.5 prediction  

Logan Square, 2017 Ashburn, 2017 

Time span N Without auxiliary variables N Without auxiliary variables With auxiliary variables (NOx and O3) 

Daytime + Met1+Mobility + Occupancy Daytime + Met + Mobility + Occupancy Daytime + Met + Mobility + Occupancy +
Pollutant 

Regression Algorithm Regression Algorithm Regression Algorithm 

MLR SVR Enhanced 
SVR 

Change 
%2 

MLR SVR Enhanced 
SVR 

Change 
%2 

MLR SVR Enhanced 
SVR 

Change 
%2 

Month-long 

January 719 0.195 0.678 0.828 +22.14 707 0.607 0.846 0.906 +7.09 0.663 0.857 0.938 +9.45 
February 667 0.275 0.725 0.791 +9.16 544 0.238 0.638 0.688 +7.84 0.312 0.692 0.718 +3.76 
March 681 0.137 0.503 0.557 +10.74 642 0.130 0.492 0.532 +8.13 0.285 0.544 0.582 +6.99 
April 706 0.170 0.377 0.526 +39.56 689 0.371 0.493 0.533 +8.11 0.392 0.525 0.563 +7.24 
May 638 0.167 0.627 0.711 +13.40 543 0.450 0.651 0.720 +10.77 0.541 0.777 0.827 +6.44 
June 715 0.276 0.407 0.622 +52.83 682 0.075 0.419 0.642 +53.22 0.225 0.545 0.673 +23.49 
July 611 0.100 0.231 0.459 +98.70 684 0.027 0.357 0.518 +45.10 0.050 0.540 0.582 +7.78 
August 628 0.167 0.507 0.576 +13.70 630 0.216 0.465 0.535 +15.05 0.415 0.529 0.607 +14.74 
September 690 0.507 0.573 0.683 +19.11 668 0.456 0.675 0.725 +7.41 0.532 0.664 0.755 +13.70 
October 480 0.278 0.528 0.598 +13.28 718 0.282 0.543 0.603 +11.05 0.372 0.504 0.633 +25.60 
November 707 0.256 0.573 0.674 +17.59 573 0.466 0.703 0.753 +7.11 0.474 0.742 0.793 +6.87 
December 725 0.284 0.656 0.834 +27.13 375 0.550 0.654 0.822 +25.69 0.563 0.729 0.891 +22.22 

Average  0.234 0.532 0.655 þ28.11  0.322 0.578 0.665 þ17.21 0.402 0.637 0.714 þ12.36 
Season-long 

Spring 2025 0.143 0.589 0.626 +6.28 1874 0.347 0.643 0.683 +6.22 0.384 0.721 0.75 +4.17 
Summer 1954 0.131 0.521 0.573 +9.98 1996 0.293 0.539 0.599 +11.13 0.335 0.619 0.709 +5.71 
Fall 1877 0.226 0.696 0.734 +5.46 1959 0.249 0.736 0.776 +5.43 0.282 0.754 0.79 +3.95 
Winter 2111 0.186 0.733 0.812 +10.78 1626 0.48 0.792 0.842 +6.31 0.531 0.802 0.887 +8.54 

Average  0.172 0.635 0.686 þ8.11  0.335 0.643 0.696 þ8.82 0.383 0.666 0.743 þ11.67 

Year-long 

Annual 7967 0.0326 0.5517 0.614 þ11.29 7455 0.255 0.493 0.563 þ14.20 0.245 0.63 0.746 þ18.41 

1: Met: Meteorological factors. 
2: Change of enhanced SVR relative to SVR. 
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SVR and 0.56–0.75 for enhanced SVR applied across all time horizons. 
For the two model applications without auxiliary co-pollutants, using 
the enhanced approach improved model performance by between 
+5.5% and +98.7% compared with the regular SVR, depending on the 
month of data utilized. 

Second, model performance varied by time horizon, especially for 
MLR, with lower accuracy when applied to longer time horizons (i.e., 
annual vs. seasonal vs. monthly). However, differences in model per
formance by time horizon were smaller for SVR and enhanced SVR, 
suggesting these approaches are more flexible for predicting hourly 
concentrations across varied time horizons ranging from month-long to 
year-long. 

Third, model performance for monthly (and seasonal) time horizons 
varied by month (and season) for all model approaches. Among the 
month-long dataset applications, hourly PM2.5 concentrations were 
predicted by enhanced SVR (the best performing approach) with the 
highest accuracy in January (R2 ranging 0.83–0.94), followed by 
December (R2 ranging 0.82–0.89), February (R2 ranging 0.69–0.79), and 
November (R2 ranging 0.67–0.79) across both locations. Conversely, 
model performance was lowest for the July datasets for all approaches, 
with R2 ranging 0.46–0.58 for enhanced SVR, 0.23–0.54 for SVR, and 
0.03–0.10 for MLR. Aggregating on a seasonal basis, model performance 
was highest for winter followed by fall, spring, and summer in 
descending order of accuracy. Additionally, moving from regular SVR to 
enhanced SVR in both locations (ignoring co-pollutants) generally had 
the largest impact on improving model performance in summer months, 
with improvements as high as +98.7% in July in Logan square (i.e., R2 

increasing from 0.23 to 0.46). 
Fourth, the addition of auxiliary co-pollutants to the Ashburn data

sets increased model performance in all months. The largest increase in 
model performance resulting from introducing co-pollutants was for the 
annual dataset, increasing R2 by ~33% (from 0.56 to 0.75). Addition
ally, the magnitude of improvement varied by month and season, with 
higher improvements observed in spring and summer months than fall 
and winter months. For example, comparing enhanced SVR approaches 
in Ashburn with and without co-pollutants, adding co-pollutants 
increased R2 on an absolute basis by an average of 0.06 (~10% rela
tive basis) in spring and summer months and by an average of 0.04 
(~5% relative basis) in fall and winter months. The highest individual 
months of relative improvement in model performance achieved by 
adding co-pollutants to the enhanced SVR approach were May (15%), 
August (13%), and July (12%), respectively. Model accuracy was never 
reduced by including co-pollutants in the Ashburn datasets. Because of 
these significant improvements, we subsequently explore in more detail 
the impacts of including auxiliary pollutants in the inter-model sensi
tivity analysis in section 3.3 

Table 8 provides results from the intra-model sensitivity analysis of 
the regular SVR approaches (without auxiliary pollutants) applied to the 
Ashburn and Logan Square datasets using the variable importance (VI) 
technique. Seasonal and yearlong hourly horizons were applied and the 
VIs were aggregated into the variable-category level, including meteo
rological, daytime/calendar, and human activity patterns, and normal
ized between 0% and 100% (Type A). To further explore the influence of 
including human activity patterns in these models, we also divided this 
category into mobility and occupancy patterns. We also normalized the 
VIs between 0% and 100% for these two sub-categories (Type B). 

For Type A analysis, results suggest that the meteorological category 
of variables is more influential than the other two categories of variables 
for predicting both seasonal and yearlong hourly datasets. Further, 
including human activity patterns is more influential in summer than 
winter seasons (i.e., 32.9% and 26.2% vs. 18.2% and 20.0% for Ashburn 
and Logan Square, respectively). Second, for Type B analysis, it was 
found that for all durations in Ashburn and Logan Square, mobility 
factors are more influential than occupancy profiles in the model. For 
example, the magnitude of occupancy importance in winter was found 
to be 29% and 27% for Ashburn and Logan Square, respectively, 

compared with only 16.2% and 12.3%, respectively, in summer. This 
may be attributable to higher combustion emissions by the buildings 
sector during winter compared to summer in Chicago (Energy Usage 
2010 | City, 2010). Research conducted by (Clougherty et al., 2013) 
confirms such impacts of buildings in wintertime for explaining varia
tions in intraurban PM2.5 concentrations for New York City. 

3.3. Understanding impacts of human activity patterns based on 
enhanced vs. regular approaches using inter-model sensitivity analysis 

3.3.1. Models without auxiliary pollutants 
Table 9 shows results obtained from the application of both the 

regular and enhanced kernel SVR models to weeklong hourly data with 
various combinations of variables for predicting PM2.5 concentrations 
across the three urban locations in Chicago. First, limiting only to the 
regular models, in Logan Square, model-9, which includes residential 
building occupancy profiles as a way to describe human activity pat
terns, provided the most accurate results (R2 = 0.81), even more effec
tively than the models that employed mobility (traffic) factors (i.e., 
models 4 through 7 with R2 ranging 0.73–0.78). This suggests that 
residential building occupancy patterns may impact local ambient PM2.5 
concentrations in this neighborhood with its primarily residential 
morphology more than commercial building occupancy patterns or even 
traffic patterns. Similarly, hourly concentrations of PM2.5 in the Loop 
were best explained by the regular models that included commercial 
building occupancy profiles (i.e., model-6 with R2 = 0.82), which 
further suggests that building occupancy patterns may impact local 
PM2.5 concentrations in this neighborhood with its primarily commer
cial building morphology. Conversely, concentrations of PM2.5 in Ash
burn, which contains a combination of low-rise residential and 
industrial buildings, were best explained with model-3, which did not 
include human activity or traffic patterns. Additionally, air pollution 
and most of the weather data in the Loop were collected from the same 
location; thus, the level accuracy of the best model results for this 
location is higher than the other neighborhoods (i.e., R2 = 0.91 vs. 0.81 
and 0.82). 

Compared to the regular models in Table 9, the enhanced models 
explained variations in PM2.5 concentrations with greater accuracy. For 
example, Model-15 is based on residential occupancy and traffic profiles 
combined, which includes the newly created variable (C3). This model 
explained variations in PM2.5 concentrations in the Logan Square 

Table 8 
Percentage of relative VIs for intra-model sensitivity analysis based on flatness of 
PDP curve over ICE plots. Seasonal and annual hourly PM2.5 concentrations 
based on datasets without auxiliary pollutants were predicted using the regular 
SVR approach for Ashburn and Logan Square.  

Type Category of 
variables 

Spring Summer Fall Winter Annual 

Ashburn 

A Meteorological 61.1% 53.1% 56.6% 62.3% 60.9% 
Human activity 
patterns 

22.2% 32.9% 19.1% 18.2% 21.3% 

Daytime/calendar 16.7% 14.1% 24.3% 19.5% 17.8%   

Percentage of occupancy vs mobility 

B Occupancy profiles 17.1% 16.0% 16.2% 29.0% 24.8% 
Mobility profiles 82.9% 84.0% 83.8% 71.0% 75.2% 

Logan Square 

A Meteorological 63.0% 48.7% 65.3% 63.0% 59.5% 
Human activity 
patterns 

23.6% 26.2% 21.0% 20.0% 18.4% 

Daytime/calendar 13.4% 25.2% 13.7% 17.0% 22.1%   

Percentage of occupancy vs mobility 

B Occupancy profiles 14.8% 12.3% 18.6% 27.0% 12.5% 
Mobility profiles 85.2% 87.7% 81.4% 73.0% 87.5%  
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neighborhood slightly more accurately than the best performing regular 
model (R2 = 0.84 vs. 0.81). Similarly, the enhanced model-10, which 
includes traffic speed variables but not building occupancy variables, 
best explained variations in PM2.5 concentrations in the Ashburn 
neighborhood (R2 = 0.84 vs. 0.82). The enhanced model-11, which in
cludes both commercial building occupancy and mobility (traffic) pro
files (via C1), explained variations in PM2.5 concentrations in the Loop 

neighborhood with the highest accuracy (R2 = 0.92). It should be noted 
that the accuracy of enhanced models in the inter-model sensitivity 
analysis is lower than the models developed in Table 7 because we only 
cascaded one category of variables (i.e., human activity patterns) for this 
section to capture how cascading this category of variables improves 
model accuracy. This is a necessary limitation to answer this specific 
question. The enhanced approach enabled explanation of local PM2.5 

Table 9 
Results of inter-model sensitivity analysis based on R2 metric obtained from regular and enhanced SVR models for weeklong hourly data in June 2017 with various 
combinations of variables for predicting intraurban PM2.5 concentrations in Logan Square, Ashburn, and Loop.  

Model Explanatory Variables Logan Square Ashburn Loop (Downtown) 

June 23–30, 2017 June 23–30, 2017 June 22–29, 2017 

n = 172 n = 164 n = 165    

R2 adj. R2 RMSE MAE R2 adj. R2 RMSE MAE R2 adj. R2 RMSE MAE 

Regular 

0 Met 0.714 0.705 0.122 0.094 0.682 0.672 0.127 0.102 0.768 0.761 0.140 0.097 
1 Hour 0.003 − 0.028 0.209 0.166 0.000 − 0.032 0.230 0.174 0.052 0.022 0.243 0.197 
2 Hour, Met 0.767 0.760 0.114 0.091 0.718 0.708 0.126 0.100 0.852 0.847 0.120 0.082 
3 Hour, Weekday, Met (Base Model) 0.807 0.801 0.106 0.086 0.821 0.815 0.109 0.087 0.892 0.888 0.104 0.075 
4 Hour, Weekday, Met, Tcount, Tspeed 0.777 0.770 0.112 0.089 0.709 0.700 0.132 0.104 0.862 0.858 0.102 0.075 
5 Hour, Weekday, Met, Comm 0.736 0.728 0.126 0.097 0.759 0.751 0.124 0.095 0.898 0.895 0.098 0.069 
6 Hour, Weekday, Met, Tcount, Tspeed, 

Comm 
0.770 0.763 0.113 0.095 0.625 0.613 0.148 0.117 0.910 0.908 0.091 0.067 

7 Hour, Weekday, Met, Tcount, Tspeed, 
Comm, Res 

0.778 0.771 0.111 0.091 0.587 0.574 0.154 0.121 0.900 0.897 0.089 0.067 

8 Hour, Weekday, Met, Tcount, Tspeed, Res 0.811 0.805 0.106 0.083 0.665 0.654 0.138 0.111 0.865 0.860 0.101 0.075 
9 Hour, Weekday, Met, Res 0.811 0.805 0.106 0.085 0.805 0.799 0.114 0.091 0.866 0.862 0.131 0.086 

Enhanced 

10 Hour, Weekday, Met, C11 0.818 0.812 0.110 0.086 0.843 0.838 0.096 0.080 0.873 0.869 0.108 0.077 
11 Hour, Weekday, Met, Comm, C1 0.804 0.798 0.118 0.093 0.778 0.771 0.106 0.083 0.922 0.919 0.088 0.059 
12 Hour, Weekday, Met, Res, C1 0.806 0.800 0.113 0.088 0.809 0.803 0.111 0.094 0.872 0.868 0.100 0.065 

13 Hour, Weekday, Met, C22 0.824 0.818 0.102 0.083 0.791 0.784 0.115 0.095 0.848 0.843 0.141 0.105 
14 Hour, Weekday, Met, Res, C2 0.817 0.812 0.106 0.085 0.803 0.797 0.107 0.088 0.856 0.852 0.129 0.091 

15 Hour, Weekday, Met, C33 0.842 0.837 0.101 0.081 0.822 0.817 0.110 0.090 0.861 0.857 0.124 0.095 

C1 = Tcount & Tspeed; C2 = Comm & Tcount; C3 = Res & Tspeed. 
Cells highlighted in bold lettering highlight the best performing model scenario in the table of model comparisons. 

Table 10 
Results of inter-model sensitivity analysis based on R2 metric obtained from regular and enhanced SVR models for month-long hourly data in June 2017 with various 
combinations of variables for predicting intraurban PM2.5 concentrations in Logan Square and Ashburn.  

Model Explanatory Variables Logan Square Ashburn 

June 1–31, 2017 June 1–31, 2017 

n = 717 n = 682 

R2 adj.R2 RMSE MAE R2 adj.R2 RMSE MAE 

Regular 

0 Met 0.323 0.319 0.116 0.082 0.329 0.324 0.127 0.093 
1 Hour 0.027 0.022 0.140 0.106 0.002 − 0.005 0.155 0.115 
2 Hour, Met 0.364 0.361 0.112 0.079 0.397 0.392 0.121 0.087 
3 Hour, Weekday, Met (Base Model) 0.422 0.419 0.108 0.076 0.603 0.600 0.099 0.073 
4 Hour, Weekday, Met, Tcount, Tspeed 0.396 0.394 0.110 0.078 0.554 0.550 0.106 0.074 
5 Hour, Weekday, Met, Comm 0.335 0.332 0.118 0.083 0.527 0.524 0.110 0.083 
6 Hour, Weekday, Met, Tcount, Tspeed, Comm 0.323 0.320 0.118 0.084 0.436 0.432 0.126 0.096 
7 Hour, Weekday, Met, Tcount, Tspeed, Comm, Res 0.332 0.329 0.117 0.084 0.419 0.414 0.129 0.097 
8 Hour, Weekday, Met, Tcount, Tspeed, Res 0.390 0.388 0.111 0.079 0.478 0.474 0.119 0.086 
9 Hour, Weekday, Met, Res 0.420 0.418 0.108 0.076 0.596 0.593 0.099 0.076 

Enhanced 

10 Hour, Weekday, Met, C1 0.431 0.429 0.106 0.076 0.625 0.623 0.089 0.067 
11 Hour, Weekday, Met, Comm, C1 0.379 0.376 0.110 0.080 0.463 0.459 0.117 0.088 
12 Hour, Weekday, Met, Res, C1 0.418 0.415 0.107 0.078 0.496 0.492 0.112 0.083 

13 Hour, Weekday, Met, C2 0.356 0.353 0.114 0.082 0.565 0.562 0.102 0.078 
14 Hour, Weekday, Met, Res, C2 0.353 0.350 0.114 0.081 0.529 0.526 0.106 0.082 

15 Hour, Weekday, Met, C3 0.440 0.437 0.106 0.074 0.562 0.559 0.103 0.078 

C1 = Tcount & Tspeed; C2 = Comm & Tcount; C3 = Res & Tspeed. 
Cells highlighted in bold lettering highlight the best performing model scenario in the table of model comparisons. 
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variations in these datasets and models with slightly higher accuracy by 
reducing Pearson correlations between factors in which both mobility 
and occupancy were incorporated together rather than using human- 
related factors independently. 

Table 10 and Table 11 present performance metrics for predictions of 
PM2.5 concentrations for month-long periods of hourly data for Ashburn 
and Logan Square in June 2017 and July 2017, respectively, using both 
regular and enhanced approaches. Similarly, Table 12 shows model 
performance in both Ashburn and Logan Square in December for a 
month-long duration. Unlike the results obtained from the week-long 
summertime data, the model effectiveness for the month-long hourly 
data was much lower, indicating that weekly patterns cannot be easily 
extracted out of a month-long hourly duration in the summer season. 
Thus, the generalization power of the month-long summer data in the 
model is lower than those of weeklong durations. This may be because of 
the lowest influence of the weekday factor, which explains less of the 
weekly PM2.5 variations in the summer season (VI = 3.9%, 4.2%) 
compared to the winter season (VI = 9.9%, 9.6%) for Ashburn and Logan 
Square, respectively, based on the magnitude of flatness of the PDP 
curves over ICE Plots (Table 13). Moreover, among the regular models, 
model-3, which considered only daytime and meteorological factors 
without any human-related factors, provided the highest accuracy for 
the Logan Square and Ashburn locations in both June and July. This 
indicates that in the summertime the regular approach handles data 
with the base model including no human activity factors more effec
tively. Conversely, the enhanced models achieved slightly higher accu
racy for both locations, with model-15 and model-10 performing best for 
Logan Square and Ashburn, respectively. These models included newly 
created variables (C1 and C3), indicating that human activity patterns 
can moderately improve model performance in these datasets if corre
lations between these patterns are removed through the proposed 
enhanced approach. 

The best performing regular and enhanced models ifor December 
2017 in both Logan Square (model-9 and model-15) and Ashburn 
(model-9 and model-14) included residential building occupancy pat
terns, which as mentioned earlier, may be because of higher combustion 
emissions by residential buildings during the winter in Chicago (Energy 

Usage 2010 | City, 2010). These results indicate that the variation of 
ambient PM2.5 concentrations in Logan Square, which serves as a 
representative of a primarily residential neighborhood, is defined well 
by residential building occupancy and traffic profiles, while in Ashburn, 
which serves as a representative of a primarily residential and industrial 
neighborhood, the variation is explained most effectively by residential 
and commercial occupancies and traffic profiles together. 

Additionally, contrary to the month-long summer data, the accuracy 
of models for the month-long winter data increased (i.e., from R2 

ranging 0.38–0.60 to R2 ranging 0.76–0.80). Potential reasons for this 
better fit to month-long wintertime data may include the lack of inclu
sion of biogenic factors in the model that are known to associate with the 
formation of fine particulate matter in the summertime (Hallquist et al., 
2009) and the accumulation of pollution in the summertime because of 
stagnant weather conditions in Chicago (Jing et al., 2016). Stagnation is 
a meteorological phenomenon that traps air pollutants, limiting their 
removal from an airshed (Leung, 2005). To explore the potential for 
stagnation effects, Fig. 3 illustrates wind speed vs. PM2.5 variations 
against each other in the Logan Square and Ashburn neighborhoods in 
both July and December 2017 using centered-ICE plots averaged with 
PDP curves. The average of interaction between wind speed and PM2.5 
for all instances in July is almost negligible based on the flatter PDP 
curves in Fig. 3a (Ashburn) and 3c (Logan Square). Conversely, the 
magnitude of changes on y-axis is more variable in December (Fig. 3b 
and d) than in July for both neighborhoods. These data suggest that 
wind speed in wintertime contributes more to the model prediction of 
local PM2.5 concentrations than in summertime, which is consistent with 
the literature (e.g., (Tunno et al., 2016b)). 

Fig. 4 illustrates relative VI comparing regular and enhanced SVR 
approaches for predicting month-long hourly PM2.5 concentrations in 
Ashburn in December (i.e., data from Table 12). This VI plots show how 
the cascading approach helps improve model performance based on 
reducing model complexity. For example, in model-7 (Fig. 4-c), the 
summation of relative VI of traffic speed and residential occupancy 
patterns is calculated to be 16%, while in the enhanced model (Fig. 4-d), 
the newly created variable C3 has a higher percentage of relative VI 
(17.9%) along with higher model performance (R2 = 0.79 vs. 0.66), 

Table 11 
Results of inter-model sensitivity analysis based on R2 metric obtained from regular and enhanced SVR models for month-long hourly data in July 2017 with various 
combinations of variables for predicting intraurban PM2.5 concentrations in Logan Square and Ashburn.  

Model Explanatory Variables Logan Square Ashburn 

July 1–31, 2017 July 1–31, 2017 

n = 714 n = 690 

R2 adj.R2 RMSE MAE R2 adj.R2 RMSE MAE 

Regular 

0 Met 0.223 0.219 0.105 0.081 0.319 0.315 0.089 0.070 
1 Hour 0.119 0.114 0.111 0.088 0.002 0.004 0.108 0.086 
2 Hour, Met 0.332 0.328 0.098 0.075 0.373 0.369 0.086 0.069 
3 Hour, Weekday, Met (Base Model) 0.378 0.375 0.093 0.071 0.446 0.443 0.080 0.062 
4 Hour, Weekday, Met, Tcount, Tspeed 0.303 0.299 0.100 0.075 0.427 0.423 0.081 0.064 
5 Hour, Weekday, Met, Comm 0.332 0.328 0.098 0.075 0.347 0.343 0.088 0.068 
6 Hour, Weekday, Met, Tcount, Tspeed, Comm 0.224 0.220 0.110 0.084 0.359 0.355 0.086 0.069 
7 Hour, Weekday, Met, Tcount, Tspeed, Comm, Res 0.231 0.227 0.109 0.084 0.357 0.353 0.086 0.069 
8 Hour, Weekday, Met, Tcount, Tspeed, Res 0.312 0.308 0.100 0.075 0.414 0.410 0.082 0.066 
9 Hour, Weekday, Met, Res 0.359 0.355 0.095 0.073 0.445 0.442 0.080 0.063 

Enhanced 

10 Hour, Weekday, Met, C1 0.345 0.342 0.095 0.073 0.455 0.451 0.079 0.062 
11 Hour, Weekday, Met, Comm, C1 0.323 0.320 0.096 0.073 0.380 0.376 0.085 0.067 
12 Hour, Weekday, Met, Res, C1 0.352 0.349 0.094 0.072 0.436 0.432 0.079 0.063 

13 Hour, Weekday, Met, C2 0.335 0.331 0.095 0.073 0.398 0.394 0.085 0.066 
14 Hour, Weekday, Met, Res, C2 0.346 0.343 0.094 0.072 0.406 0.402 0.083 0.066 

15 Hour, Weekday, Met, C3 0.412 0.409 0.090 0.069 0.450 0.446 0.083 0.065 

C1 = Tcount & Tspeed; C2 = Comm & Tcount; C3 = Res & Tspeed. 
Cells highlighted in bold lettering highlight the best performing model scenario in the table of model comparisons. 
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indicating that the enhanced approach can effectively predict local 
PM2.5 while data dimensionality is reduced. The Pearson correlation for 
creating the C3 variable was R = 0.99. We plotted these plots for July as 
well as December and July for Logan Square and found the same model 

improving process (although results are not shown for brevity). It was 
also found that wind speed and wind gust had marginal impacts on 
PM2.5 concentrations. Research by (Ito et al., 2007) confirms lower 
correlations between PM2.5 and wind speed for temporal trends. On the 
other hand, relative humidity was found to be an influencial factor in the 
model during the wintertime. Others have similarly found RH to be a 
significant predictor of urban PM2.5 concentrations (Chu et al., 2010; Su 
et al., 2016; Tai et al., 2010; Cheng et al., 2015). Further, another study 
indicated that 70% of PM2.5 concentration reductions in December was 
associated with variations in natural (meteorological) conditions (Zhang 
et al., 2019). Therefore, the findings from this VI analysis for both lo
cations across seasons as well as the annual time horizon in Table 8 
indicate the importance of meteorological over anthropogenic factors 
for the selected locations in Chicago. 

Fig. 5 illustrates predicted out of sample (test set) PM2.5 concentra
tions based on month-long data for Ashburn and Logan Square during 
July and December, using models obtained from Tables 11 and 12. The 
graph shows that model-0 (orange line) cannot handle extreme values in 
the model and moved across the mean values of the actual PM2.5. In July, 

Table 12 
Results of inter-model sensitivity analysis based on R2 metric obtained from regular and enhanced SVR models for month-long hourly data in December 2017 with 
various combinations of variables for predicting intraurban PM2.5 concentrations in Logan Square and Ashburn.  

Model Explanatory Variables Logan Square Ashburn 

December 1–31, 2017 December 1–31, 2017 

n = 714 n = 690 

R2 adj.R2 RMSE MAE R2 adj.R2 RMSE MAE 

Regular 

0 Met 0.333 0.330 0.148 0.104 0.443 0.440 0.128 0.086 
1 Hour 0.006 0.002 0.186 0.133 0.003 − 0.002 0.169 0.121 
2 Hour, Met 0.407 0.404 0.140 0.096 0.530 0.528 0.117 0.075 
3 Hour, Weekday, Met (Base Model) 0.662 0.661 0.111 0.08 0.695 0.693 0.093 0.062 
4 Hour, Weekday, Met, Tcount, Tspeed 0.627 0.625 0.113 0.074 0.702 0.701 0.094 0.067 
5 Hour, Weekday, Met, Comm 0.664 0.663 0.113 0.082 0.702 0.701 0.092 0.061 
6 Hour, Weekday, Met, Tcount, Tspeed, Comm 0.643 0.641 0.118 0.089 0.695 0.693 0.097 0.069 
7 Hour, Weekday, Met, Tcount, Tspeed, Comm, Res 0.656 0.654 0.118 0.090 0.684 0.682 0.099 0.068 
8 Hour, Weekday, Met, Tcount, Tspeed, Res 0.678 0.677 0.114 0.086 0.709 0.708 0.095 0.069 
9 Hour, Weekday, Met, Res 0.755 0.754 0.098 0.077 0.761 0.760 0.084 0.061 

Enhanced 

10 Hour, Weekday, Met, C1 0.748 0.747 0.094 0.069 0.750 0.749 0.085 0.064 
11 Hour, Weekday, Met, Comm, C1 0.735 0.734 0.097 0.071 0.746 0.745 0.086 0.064 
12 Hour, Weekday, Met, Res, C1 0.763 0.761 0.091 0.068 0.757 0.756 0.084 0.062 

13 Hour, Weekday, Met, C2 0.735 0.733 0.101 0.076 0.743 0.741 0.084 0.063 
14 Hour, Weekday, Met, Res, C2 0.756 0.755 0.092 0.069 0.794 0.793 0.076 0.059 

15 Hour, Weekday, Met, C3 0.798 0.797 0.084 0.063 0.788 0.787 0.078 0.060 

C1 = Tcount & Tspeed; C2 = Comm & Tcount; C3 = Res & Tspeed. 
Cells highlighted in bold lettering highlight the best performing model scenario in the table of model comparisons. 

Table 13 
Percentage of VIs for weekday factor for seasonal and annual hourly PM2.5 
predictions for Ashburn and Logan Square using regular SVR models in table 
based on calculating flatness of PDP curves over ICE plots.  

Percentage of relative VIs for weekday factors for seasonal and annual hourly 
prediction  

Spring Summer Fall Winter Annual 

Ashburn 

Weekday 7.1% 3.9% 7.2% 9.9% 3.8% 
Logan Square 
Weekday 6.8% 4.2% 6.7% 9.6% 6.8% 

Cells highlighted in bold lettering highlight the best performing model scenario 
in the table of model comparisons. 

Fig. 3. Centered ICE plots averaged by PDP curves for visualization of interactions between wind speed and PM2.5 variations in Ashburn (a, b) and Logan Square (c, 
d) in July (a, c) and December (b, d) 2017. 

M. Ashayeri et al.                                                                                                                                                                                                                               



Environmental Research xxx (xxxx) xxx

13

model-3 (base model) was the best regular model, indicating that human 
activity patterns did not increase the model effectiveness using the 
regular predictive approach for summer data. It should be noted that 
model-3 and the best regular models are the same in July for both 
neighborhoods; thus, only one line (red) is shown. Unlike the regular 
models, the enhanced approach handled summer data better. In 
December, regular models with human activity patterns provided better 
fitting in the plots than the base model, meaning than in this month, 
outdoor PM2.5 is more impacted by anthropogenic activities. As Fig. 5 
shows, the best models, which are based on enhanced approach and C 
factors, handle extreme values more effectively than the regular 
approach. 

3.3.2. Models with auxiliary pollutants (NOx and O3) 
Tables 14 and 15 show the performance of both regular and 

enhanced models for predicting PM2.5 concentrations at the Ashburn 

monitoring site in July 2017 and December 2017, respectively, consid
ering additional auxiliary variables of concurrent ambient concentra
tions of ozone (O3) and nitrogen oxides (NOx) measured at the same site, 
which, as mentioned previously, are known precursor gaseous compo
nents for the formation of PM2.5 (Anenberg et al., 2012). Only the 
Ashburn location was investigated for co-pollutant influences because it 
was the only monitoring site in our sample with data for all three con
stituents (i.e., PM2.5, O3, and NOx). Tables 14 and 15 also include two 
additional models (model-16 and model-17) that include a new variable 
(C4) that accounts for O3, solar radiation, and traffic variables; the 
models with null pollutants are the same as Table 11 for Ashburn. The 
results indicate that adding these two pollutants slightly increased 
model accuracy for both regular and enhanced models in July (i.e., R2 

increased by 0.03–0.04 compared to null models) but slightly decreased 
model accuracy in December (i.e., R2 decreased by ~0.02 in enhanced 
models). 

Fig. 4. Bar plots of relative VI for month-long hourly PM2.5 prediction for Ashburn in December by regular SVR (a to c) and enhanced SVR (d) based for intra-model 
sensitivity analysis. Dotted red lines show factors for human activity patterns. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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Regarding the p-models that include only pollutants as the explan
atory variables, O3 was found to be more effective than NOx for hourly 
PM2.5 prediction in July (Table 14), while NOx explains PM2.5 variations 
in December better than O3 (Table 15). It should be noted that NOx itself 
contributes as a precursor-pollutant for the formation of both urban O3 
(Khalil, 2018; Guo et al., 2019) and PM2.5 (Fu et al., 2016; Sullivan et al., 
2017). The accuracy of model-3, which includes all factors in the model, 
for July in Ashburn reduced from R2 of 0.45 to R2 of 0.37 and 0.39 by 
separately adding NOx and O3, respectively, indicating that adding 
auxiliary factors of pollutants imposed more complexity into the model 
and does not improve accuracy. However, considering these same pol
lutants but removing mobility (Tcount and Tspeed) and commercial 

occupancy (i.e., model-9) showed higher accuracy (R2 = 0.48 for NOx, 
0.48 for O3). Similar to July, these pollutants have interactions with 
human activity patterns in December (Table 15), as the model with no 
human activity patterns (model-3) was found to be the best model 
among regular models. This indicates that the auxiliary pollutants have 
interactions with human activity patterns. Thus, this added complexity 
into the model that reduced accuracy. Enhanced models, on the other 
hand, were able to keep the impacts of human activity patterns in the 
model while also slightly improving accuracy. 

Model-16 in Table 14, which entails two new (calculated) variables 
(C3 and C4) is 3.5% more effective than model-9 in terms of R2 because 
C3 reduced correlation between mobility and occupancy patterns (R =

Fig. 5. Plots of predicted out of sample (test) PM2.5 concentrations for month-long data in Logan Square and Ashburn during July (a) and (c) and December (b) and 
(d), 2017, comparing variations between actual data and the model-0, model-3 (base model), best regular model, and best enhanced models. 
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0.91) and C4 reduced correlation between solar radiation and O3 (R =
0.97). Meanwhile, Model-17, which includes both NOx and C4 in the 
same model was found to be 3.5% more effective than model-16 in July. 
Thus, C4, representing ozone, solar radiation, and traffic profiles, pro
vided more accurate results than multiple correlated variables. Strong 
correlations between ozone and solar radiation (Chai and Draxler, 2014) 
has been well documented in the literature. Unlike Table 14, model-16 
and model-17 in Table 15 were not the most effective models because 
the correlation between variables in creating C4 was not strong (R =
0.24). Thus, replacing ozone, solar radiation, and traffic profiles by C4 in 
December not only did not improve model performance but actually 
decreased accuracy below that of the regular models (i.e., model-3 and 
model-8). These results indicate that creating a new variable instead of a 
pair of variables can increase model accuracy only when they are highly 
correlated. Thus, the cascading approach based on the correlation 
criteria that are explored herein demonstrates the utility of the proposed 
workflow for improving predictive model accuracy through lowering 
model complexity. 

3.4. Limitations and future work 

There are a number of limitations to consider in this work. Results 
are first and foremost limited to the study locations in Chicago, IL; future 
work should expand to different cities. Although we focus on integrating 
dynamic building occupancy patterns as a way to potentially improve 
urban air quality prediction models (and we indeed observe some 
improvement), we rely on assumptions for hourly occupancy patterns 
for commercial and residential buildings from prototype building 
models and not actual building occupancy data from our study locations. 

As data becomes more accessible, future studies may benefit from using 
actual site-specific data such as mobile data (i.e., (Nyhan et al., 2016; 
Barbour et al., 2019)) for capturing city-specific and dynamic occupancy 
patterns. Additionally, we assumed 1000 m buffer radii for building 
occupancy patterns, which were drawn from prior studies for other cities 
in the U.S.; however, further investigation could provide city-specific 
buffer radii. Moreover, although the enhanced approach has shown to 
be capable of improving model accuracy and performance, it remains 
computational expensive; thus, more advanced optimization approaches 
such as evolutionary algorithm should be explored to handle large 
datasets and lower computational requirements. 

4. Conclusion 

This work was successful in developing and applying several ma
chine learning (ML) approaches, including an enhanced ML approach – 
through hybridizing cascade and PCA approaches with ML algorithms – 
that incorporates dynamic human activity patterns (i.e., traffic mobility 
and building occupancy profiles), to improve the performance and ac
curacy of urban air quality prediction models compared to conventional 
approaches. Application of the modeling approaches to time series 
(hourly) PM2.5 datasets from three air quality monitoring sites in 
different urban neighborhoods in Chicago, IL demonstrated that the 
proposed workflow is able to improve the accuracy of current urban air 
quality models by (i) handling large datasets with many urban factors, 
(ii) reducing dimensionality and complexity of many correlated factors, 
and (iii) using the most suitable ML algorithms for solving the problem 
with no pre-deterministic approach. Further, the results obtained 
through the inter-model sensitivity analysis demonstrated that there 

Table 14 
Results of inter-model sensitivity analysis based on R2 metric obtained from regular and enhanced SVR models for month-long hourly data in July 2017 with various 
combinations of variables including auxiliary variables (O3 and NOx) for predicting intraurban PM2.5 concentrations in Ashburn.  

Model Explanatory Variables Ashburn 

July 1–31, 2017 

n = 697 

Pollutant: Null Pollutant: NOx Pollutant: O3 

R2 Adj. 
R2 

RMSE MAE R2 Adj. 
R2 

RMSE MAE R2 Adj. 
R2 

RMSE MAE 

Reguar 

0 Met, Pollutant 0.319 0.315 0.089 0.070 0.219 0.215 0.099 0.075 0.223 0.219 0.098 0.074 
P Pollutant – – – – 0.002 0.003 0.114 0.088 0.168 0.164 0.102 0.077 
1 Hour, Pollutant 0.002 0.004 0.108 0.086 0.008 0.003 0.112 0.087 0.262 0.258 0.096 0.072 
2 Hour, Pollutant, Met 0.373 0.369 0.086 0.069 0.306 0.302 0.096 0.074 0.300 0.297 0.094 0.070 
3 Hour, Pollutant, Met, Weekday (Base Model) 0.446 0.443 0.080 0.062 0.373 0.369 0.086 0.069 0.386 0.383 0.092 0.074 
4 Hour, Pollutant, Met, Weekday, Tcount, Tspeed 0.427 0.423 0.081 0.064 0.388 0.385 0.088 0.067 0.346 0.343 0.092 0.074 
5 Hour, Pollutant, Met, Weekday, Comm 0.347 0.343 0.088 0.068 0.391 0.388 0.090 0.070 0.375 0.372 0.092 0.071 
6 Hour, Pollutant, Met, Weekday, Tcount, Tspeed, 

Comm 
0.359 0.355 0.086 0.069 0.374 0.371 0.090 0.072 0.384 0.381 0.089 0.070 

7 Hour, Pollutant, Met, Weekday, Tcount, Tspeed, 
Comm, Res 

0.357 0.353 0.086 0.069 0.374 0.371 0.090 0.073 0.389 0.386 0.089 0.071 

8 Hour, Pollutant, Met, Weekday, Tcount, Speed, 
Res 

0.414 0.410 0.082 0.066 0.421 0.418 0.086 0.068 0.406 0.403 0.087 0.070 

9 Hour, Pollutant, Met, Weekday, Res 0.445 0.442 0.080 0.063 0.475 0.473 0.083 0.066 0.475 0.472 0.084 0.068 

Enhanced 

10 Hour, Pollutant, Met, Weekday, C1 0.455 0.451 0.079 0.062 0.411 0.408 0.087 0.067 0.402 0.399 0.088 0.070 
11 Hour, Pollutant, Met, Weekday, Comm, C1 0.380 0.376 0.085 0.067 0.446 0.444 0.085 0.066 0.450 0.448 0.085 0.066 
12 Hour, Pollutant, Met, Weekday, Res, C1 0.436 0.432 0.079 0.063 0.467 0.464 0.084 0.065 0.459 0.456 0.084 0.066 

13 Hour, Pollutant, Met, Weekday, C2 0.398 0.394 0.085 0.066 0.402 0.399 0.088 0.069 0.401 0.398 0.089 0.070 
14 Hour, Pollutant, Met, Weekday, Res, C2 0.406 0.402 0.083 0.066 0.424 0.422 0.086 0.069 0.441 0.438 0.085 0.068 

15 Hour, Pollutant, Met, Weekday, C3 0.450 0.446 0.083 0.065 0.471 0.468 0.084 0.066 0.436 0.433 0.087 0.070 

16 Hour, Met, C3, C4 – – – – – – – – 0.480 0.477 0.082 0.064 
17 Hour, NOX, Met, Weekday, C3, C4 – – – – 0.497 0.495 0.081 0.063 – – – – 

Pollutant = O3 or NOx; C1 = Tcount & Tspeed; C2 = Comm & Tcount; C3 = Res & Tspeed; C4 = (O3 & Sol) & Tcount. 
Cells highlighted in bold lettering highlight the best performing model scenario in the table of model comparisons. 
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exists a correlation between the dominant human activity patterns (i.e., 
mobility and building occupancy) in urban zones and intraurban 
ambient PM2.5 concentrations. 

Credit author statement 

Mehdi Ashayeri: conceptualization; methodology; software; formal 
analysis; investigation; data curation; writing original draft; visualiza
tion. Narjes Abbasabadi: methodology; software; investigation; data 
curation; writing (review and editing); visualization. Mohammad Hei
darinejad: investigation; resources; writing (review and editing); su
pervision; project administration. Brent Stephens: conceptualization; 
investigation; resources; writing (review and editing); supervision; 
project administration. 

Funding sources 

M.A. was supported in part by the John Vinci Distinguished Research 
Fellowship in the College of Architecture and by the Armour College of 
Engineering at Illinois Institute of Technology. M.H. was supported in 
part by an ASHRAE New Investigator Award. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

References 

Abbasabadi, N., Ashayeri, Mehdi, 2019. Urban energy use modeling methods and tools: a 
review and an outlook. Build. Environ. 161, 106270. https://doi.org/10.1016/j. 
buildenv.2019.106270. 

Abbasabadi, N., Ashayeri, M., Azari, R., Stephens, B., Heidarinejad, M., 2019. An 
integrated data-driven framework for urban energy use modeling (UEUM). Appl. 
Energy 253, 113550. https://doi.org/10.1016/j.apenergy.2019.113550. 

AirData website File Download page n.d. https://aqs.epa.gov/aqsweb/airdata/downloa 
d_files.html. (Accessed 17 June 2019). 

Allison, P.D., 1999. Multiple Regression: a Primer. Pine Forge Press, Thousand Oaks, 
Calif.  

Anenberg, S.C., Schwartz, J., Shindell, D., Amann, M., Faluvegi, G., Klimont, Z., et al., 
2012. Global air quality and health Co-benefits of mitigating near-term climate 
change through methane and black carbon emission controls. Environ. Health 
Perspect. 120, 831–839. https://doi.org/10.1289/ehp.1104301. 

Azimi, P., Zhao, H., Fazli, T., Zhao, D., Faramarzi, A., Leung, L., et al., 2018. Pilot study 
of the vertical variations in outdoor pollutant concentrations and environmental 
conditions along the height of a tall building. Build. Environ. 138, 124–134. https:// 
doi.org/10.1016/j.buildenv.2018.04.031. 

Barbour, E., Davila, C.C., Gupta, S., Reinhart, C., Kaur, J., González, M.C., 2019. 
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