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Influence of environmental conditions on the dithiothreitol (DTT)-Based 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Oxidative potential (OP) is an emerging 
indicator of the toxicity of PM. 

• We characterize how the transport of 
ambient PM from outdoors affects OP 
indoors. 

• The volume-normalized (extrinsic) OP 
of PM2.5 was higher outdoors than 
indoors. 

• The mass-normalized (intrinsic) OP of 
indoor PM2.5 was often greater than 
outdoors. 

• The enhancement in intrinsic OP corre
lated with environmental conditions.  
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A B S T R A C T   

Much of human exposure to particulate matter (PM) of ambient origin occurs indoors. While the oxidative po
tential (OP) of PM is an emerging indicator of the intrinsic toxicity of PM, little is known about the OP of indoor 
PM of ambient origin. Here we characterize the OP of indoor and outdoor size-resolved PM in an unoccupied 
apartment unit in Chicago, IL, free from indoor emission sources, to explore how the transport of ambient PM 
from outdoors affects OP indoors. Simultaneous measurements were conducted in both indoor and outdoor lo
cations for at least 5 consecutive days during 11 separate sampling campaigns spanning all seasons. OP was 
assessed by the dithiothreitol (DTT) assay. Indoor PM2.5 concentrations were consistently lower than outdoor 
PM2.5 concentrations, with an average (±standard deviation, SD) indoor/outdoor (I/O) PM2.5 mass concentration 
ratio of 0.36 ± 0.10. The volume-normalized (or extrinsic) OP of the particles was much higher for the outdoor 
for PM2.5 samples across all size-ranges, with an average (±SD) indoor-to-outdoor ratio (I/O) of 0.54 ± 0.57. 
However, the mass-normalized (or intrinsic) OP of indoor PM2.5 samples was greater than concurrent outdoor 
PM2.5 samples during 7 of the sampling periods and had an overall average ± SD I/O of 1.38 ± 0.97. The extent 
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of enhancement in intrinsic OP of ambient-infiltrated indoor PM2.5 was positively correlated with differences in 
indoor and outdoor temperature and relative humidity (RH). We hypothesize that changes in the intrinsic OP of 
ambient PM as it infiltrates indoors may be influenced by transformation processes such as size-resolved 
penetration, indoor deposition, evaporation of volatile chemical components with lower OP, and/or 
temperature/RH-dependent partitioning of redox-active substances to indoor-infiltrated PM. However, further 
investigations, including chemical analyses of the size-segregated indoor and outdoor PM samples and the effect 
of environmental factors on this chemical composition, will be needed to confirm these hypotheses.   

1. Introduction 

Epidemiological studies have consistently found associations be
tween elevated concentrations of ambient particulate matter, including 
fine particulate matter with aerodynamic diameter less than 2.5 μm 
(PM2.5), and adverse health outcomes, including mortality (Bowe et al., 
2019; Brook et al., 2010; Di et al., 2017; Pope et al., 2002; Pope and 
Dockery, 2006; Thurston et al., 2016). However, the heterogeneous and 
inconsistent nature of these epidemiological associations, including high 
spatiotemporal variability in the strengths of associations with adverse 
health outcomes, suggests substantial variability in human exposures 
and/or the intrinsic toxicities of ambient PM2.5 based on composition or 
other factors (Chen et al., 2012; Dai et al., 2014; Franklin et al, 2007, 
2008; Zanobetti and Schwartz, 2009; Zhou et al., 2011). Moreover, 
much of human exposure to ambient PM2.5 likely occurs indoors (Azimi 
and Stephens, 2018) because people spend nearly 90% of their time 
inside buildings (Klepeis et al., 2001) and particles of ambient origin can 
infiltrate and persist in buildings with varying efficiencies (Allen et al., 
2012; Chen and Zhao, 2011; Kearney et al., 2014; MacNeill et al, 2012, 
2014). 

Although the mechanisms of action for PM-related health effects are 
not completely understood, an increasing body of evidence has 
demonstrated that PM exposure can induce oxidative stress in the body 
and, therefore, the oxidative potential (OP) of PM, or the capability of 
particles to generate reactive oxygen species (ROS) in a biologically- 
relevant system, may be a useful indicator of the intrinsic toxicity of 
PM (Bates et al., 2019). Several recent epidemiological studies have 
shown stronger associations between respiratory and cardiovascular 
health endpoints and OP of ambient PM2.5 than with PM mass concen
trations (Abrams et al., 2017; Bates et al., 2015; Delfino et al., 2013; 
Maikawa et al., 2016; Weichenthal et al., 2016; Yang et al., 2016). 

To date, the OP of ambient PM has been characterized in numerous 
studies using a variety of approaches (Bates et al., 2019). The most 
commonly used chemical approach for characterizing the OP of PM is 
the dithiothreitol (DTT) assay. Under the presence of PM, DTT is 
oxidized by molecular oxygen, leading to the formation of DTT disulfide 
and superoxide radical (∙O2

− ). Thus, the DTT assay simulates a similar 
mechanism for the ROS generation as through the NADPH oxidation 
occurring in mitochondria (Kumagai et al., 1997). The consumption rate 
of DTT, also known as the DTT activity, has been found to be correlated 
with the production rate of H2O2 (Tong et al., 2018; Xiong et al., 2017). 
Both organic compounds [e.g. quinones, humic-like substances] as well 
as transition metals (e.g., Cu and Mn) have been shown to be active in 
the DTT assay (Charrier and Anastasio, 2012; Cho et al., 2005; Lin and 
Yu, 2011; Nicolas et al., 2015; Verma et al., 2012). 

Fewer studies have investigated the OP of indoor PM of either indoor 
or outdoor origin, including in European office buildings (Mihucz et al., 
2015; Szigeti et al, 2014, 2017) and both rural (Secrest et al., 2016) and 
urban (Zhan et al., 2018) homes in China. In the only study of which we 
are aware of the OP of PM in U.S. residences, only the particle-bound 
ROS (Khurshid et al, 2014, 2016) and the hydroxyl radical (•OH) gen
eration rate in the presence of H2O2 (Khurshid et al., 2019) have been 
measured as indicators of OP. These metrics measure the ROS already 
present on the particle’s surface or its ability to generate ROS under 
specific conditions. Conversely, OP is a generic property of the particle 
to consume cellular antioxidants directly or indirectly (i.e., by 

generating ROS in a biological or a surrogate-to-biological system). 
Although many studies have investigated size-resolved OP of 

ambient aerosol (Cho et al., 2005; Godri et al., 2011; Lovett et al., 2018; 
Saffari et al., 2013), no studies to date have reported size-resolved OP of 
indoor PM of ambient origin or explored the impacts of varying envi
ronmental conditions that may influence the composition (Hodas and 
Turpin, 2013; Johnson et al., 2017; Avery et al., 2019) and/or 
size-resolution (Zhao and Stephens, 2017) of indoor PM (and therefore 
OP) of ambient origin. Although the U.S. Environmental Protection 
Agency’s (EPA’s) most recent Integrated Science Assessment on Partic
ulate Matter (US EPA, 2019) acknowledges the importance of indoor 
exposures to PM of ambient origin, as well as the potential utility of OP 
as a health-relevant measure of PM, it does not make the explicit 
connection between ambient-to-indoor transformations of OP, largely 
because there is limited literature on the subject (Goldstein et al., 2020). 
Therefore, the goal of this work is to experimentally characterize the OP 
of size-resolved PM samples collected simultaneously inside and outside 
of an unoccupied indoor environment, free from indoor emission sour
ces, and to explore the influence of environmental conditions on the OP 
of indoor PM of ambient origin. 

2. Materials and methods 

Sampling. Simultaneous indoor and outdoor size-resolved aerosol 
samples were collected using Sioutas Impactors placed inside an unoc
cupied apartment unit and on the roof of a mid-rise (9-story) dormitory 
building on the main campus of Illinois Institute of Technology, Chicago, 
IL USA (Carman Hall, constructed in 1953). The test apartment unit, 
which is described in detail in prior publications (Kunkel et al., 2017; 
Zhao and Stephens, 2016, 2017), is a corner unit on the 3rd floor with 
two exterior walls and one wall connected to another unoccupied unit. 
The unit is not air-conditioned and is heated by a radiant floor. The 
potential entry of particulate matter from the adjacent corridor was 
minimized by taping the only door to the corridor during measurements 
(Zhao and Stephens, 2017). The Sioutas Impactor has five stages of 
aerosol collection: <0.25 μm, 0.25–0.5 μm, 0.5–1 μm, 1–2.5 μm, and 
>2.5 μm in aerodynamic diameter. Particles in each size range >0.25 μm 
are collected onto 25-mm PTFE filters; particles smaller than the 0.25 
μm cut-point of the last stage are collected onto a 37-mm PTFE 
after-filter. In both locations, the samplers were connected to an SKC 
Leland Legacy sampling pump with a flow rate of 9 L/min, verified 
periodically using TSI Mass Flow Meter Model 4143. Samplers were 
operated for at least 5 consecutive days during 11 separate sampling 
campaigns from Spring (2018) to Spring 2019 to capture a wide range in 
indoor and outdoor environmental conditions and seasonal variations in 
ambient PM concentrations. This long sampling duration might have 
caused some loss of highly volatile species but was required to ensure the 
collection of sufficient particle mass in each sample location for OP 
analysis on each size range. Three indoor samplers (kept side-by-side) 
were co-located and operated simultaneously with one outdoor 
sampler. After each sampling campaign, each filter was enclosed and 
sealed in aluminum foil and transported to a laboratory where they were 
stored at − 21 ◦C. Size-resolved indoor and outdoor particle number 
concentrations (0.3–10 μm) were also measured using a TSI Optical 
Particle Sizer (OPS) Model 3330. Indoor temperature and relative hu
midity were measured using an Onset HOBO U12 logging at 1-min 
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intervals, and outdoor weather data were captured from the closest 
weather station about 500 m away from the sampling site based on 1-h 
interval. The indoor and outdoor weather data (i.e., temperature and 
RH) for each sampling set were computed by averaging all the data of 
the individual parameters obtained during the corresponding sampling 
period. The average indoor temperature inside the apartment unit was 
always higher than that of the outdoor environment, which is typical of 
this vintage of mid-rise residential building without air-conditioning 
(Dentz et al., 2014). 

Mass concentration determination. Size-resolved mass concentra
tions were determined by weighing blank and field-collected filters after 
conditioning in a sealed chamber for at least 48 h at 25 ± 2 ◦C and 35 ±
5% RH. The samples were weighed 5 times using a microanalytical 
balance with an accuracy of 0.01 mg (AUW220D, Shimadzu, Japan). 
Because multiple samplers were co-located in each campaign, the total 
mass concentration on each size-fraction in each location was calculated 
as the sum of the mass across all co-located filters divided by the total 
volume of air sampled summed across multiple samplers. 

Oxidative potential analysis. Each size-resolved sample collected 
from both indoor and outdoor locations was extracted into deionized 
(DI) water separately. Each filter was immersed into a fixed volume of DI 
(5 mL for 25 mm size-resolved filters; 15 mL for 37 mm PTFE filters) and 
was sonicated in an ultrasonic water bath for 30 min. These extracts 
were filtered through a 0.45 μm PTFE syringe filter to remove the 
insoluble components and filter fibers. The extracts were diluted to 15 
μg PM/mL for the DTT assay. Extracts from the same co-located size 
fractions were combined and DTT assays were carried out on these 
combined extracts using an automated DTT instrument based on the 
protocol described in Fang et al. (2015). Briefly, 3.5 mL of each 
extracted sample was mixed with 0.5 mL of DTT and 1 mL of phosphate 
buffer (P-KB, pH = 7.4). At exact time intervals of 3, 15, 27, 39, and 51 
min, a small aliquot (100 μL) of the reaction mixture was mixed with 
500 μL DTNB, which leads to the formation of a yellow-colored complex 

TNB. The concentration of this complex was determined by measuring 
its absorbance at 412 nm with an online miniature spectrophotometer 
(Ocean Optics, Dunedin, FL, US) coupled to a liquid waveguide capillary 
cell (LWCC; World Precision Instruments, Sarasota, FL, US). DTT activity 
(μM/min) was then calculated as the slope of the DTT concentration 
decay over time. The raw DTT activities of the samples were blank 
corrected by subtracting the DTT activity of the filter blanks (0.48 ±
0.07 μM/min). The intrinsic mass-normalized OP (DTTm, defined as 
DTT activity per μg of PM mass, nmol/min/μg) and the extrinsic 
volume-normalized OP (DTTv, which is a function of both intrinsic OP 
and the mass concentration, defined as the DTT activity per m3 of air, 
nmol/min/m3) for each sample is calculated by Equations (1) and (2), 
respectively: 

DTTmsample =
OPDTT

raw
msample

VDI
× 0.7

(1)  

DTTvsample = ṁsampleDTTmsample (2)  

where msample is the total mass of PM on the fraction of the filter used for 
extraction (μg), VDI is the volume of DI used for extracting the filter, 0.7 
is the ratio of the sample extract volume to the total reaction volume in 
RV, and ṁsample is the mass concentration of the PM in different size bins 
(μg/m3). 

3. Results and discussion 

Fig. 1 shows the resulting time-integrated indoor and outdoor size- 
resolved PM mass concentrations measured during each sampling 
campaign throughout the study duration. A full summary of indoor and 
outdoor sampling results is provided in the supplemental information 
(SI) (Table S1 to S4). The average indoor and outdoor total PM mass 
concentrations integrated across all sizes, including >2.5 μm, were 4.0 

Fig. 1. Time-integrated indoor and outdoor size-resolved PM mass concentrations measured during each sampling campaign.  
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μg/m3 and 13.9 μg/m3, respectively, ranging 1.6–6.2 μg/m3 and 
6.2–20.3 μg/m3, respectively. Similarly, the average indoor and outdoor 
PM2.5 mass concentrations were 3.7 and 10.3 μg/m3, respectively, 
ranging 1.6–5.9 μg/m3 and 6.2–13.9 μg/m3, respectively. 

Indoor PM2.5 concentrations were consistently lower than outdoor 
PM2.5 concentrations, with an average (±standard deviation, SD) in
door/outdoor (I/O) PM2.5 mass ratio of 0.36 ± 0.10, ranging from 0.24 
to 0.54, which is slightly lower than what has been measured previously 
in the same unoccupied apartment unit using optical monitors (Zhao and 
Stephens, 2017). The time series of integrated PM0.3-2.5 mass concen
trations for both indoor and outdoor environments as obtained from OPS 
during all sampling periods are also reported in Figure S1 of the SI. The 
PM0.3-2.5 mass concentrations in the outdoor samples were significantly 
higher (2.6–6.4 times) than those from inside the unoccupied apartment 
unit, which indicated no major indoor sources. Further, we did not 
observe any other indicators of intermittent indoor PM sources in the 
OPS data. For example, there were no sudden spikes in the OPS data in 
which indoor PM concentrations peaked higher than the concurrent 
outdoor PM concentrations, and we did not observe any sudden large (e. 
g., at least 5 μg/m3) increases in indoor PM concentrations without 
concurrent increases in outdoor concentrations. Finally, indoor PM0.3-2.5 
mass concentrations followed the same trends in variation as the out
door PM0.3-2.5 mass concentrations, which confirmed that there were no 
obvious indoor sources in the unit or coming from the adjacent apart
ments or the hallway. 

Fig. 2 shows the time-integrated extrinsic (DTTv) and intrinsic OP 
(DTTm) levels of indoor and outdoor PM2.5 (integrated across all size 
bins <2.5 μm), as well as the I/O ratio of PM2.5 DTTv and DTTm, from 
each approximately weeklong measurement period. Outdoor extrinsic 
OP (DTTv) of PM2.5 samples was consistently higher than indoor DTTv 
(Fig. 2a), except for one measurement in February 2019, with an 
average (±SD) indoor-to-outdoor ratio (I/O) of 0.54 ± 0.57. This trend 
of significantly higher outdoor DTTv than indoors is largely driven by 
low I/O ratios of PM2.5 mass concentrations. Conversely, the mass- 
normalized (or intrinsic) OP of indoor PM2.5 samples was greater than 
concurrent outdoor PM2.5 samples during 7 of the sampling periods and 
had an overall average ± SD I/O ratio of 1.38 ± 0.97, with significant 
seasonal variations (p < 0.05 from unpaired t-test between warmer and 
colder seasons, defined as an average outdoor temperature higher or 
lower than 15 ◦C, respectively) (Fig. 2b). Outdoor PM2.5 DTTm was 
generally higher in warmer months compared to colder months (p <
0.05 in unpaired t-test), while no significant difference was observed for 
indoor PM2.5 DTTm between warmer and colder seasons (p = 0.24). I/O 
PM2.5 DTTm ratios were generally less than 1 during summer months 
and greater than 1 during fall and winter months. Over half of the PM2.5 
DTTm I/O ratios were greater than 1, with a maximum of ~4.2. 

Distributions of size-resolved DTTv and DTTm I/O ratios are shown 

in Fig. 3. Most of the I/O ratios for DTTv were below 1 (0.04–0.7), 
indicating lower indoor DTTv across all particle sizes with only a few 
exceptions. In contrast, I/O ratios of DTTm showed a large range, 
varying from 0.1 to 7.3. Interestingly, the ratios were above 1 for more 
than 60% of the samples (34 out of 55), and appeared to be distributed 
uniformly throughout all particle sizes. This contrast in I/O ratios for 
DTTm vs. DTTv indicates a frequent enhancement in intrinsic OP as 
ambient PM infiltrated and persisted indoors. 

To explore potential indoor and outdoor environmental de
terminants of indoor OP of PM2.5 of ambient origin, we plotted I/O ratios 
of PM2.5 OP (both DTTv and DTTm) versus indoor-outdoor differences in 
temperature (i.e., indoor minus outdoor) and outdoor-indoor differences 
in RH (i.e., outdoor minus indoor), as shown in Fig. 4. Modest correla
tions were observed between the I/O ratio of DTTv for PM2.5 and indoor- 
outdoor differences in temperature (Fig. 4a; R2 = 0.37; Spearman rho =
0.48, p = 0.13) and outdoor-indoor differences in RH (Fig. 4b; R2 = 0.52; 
Spearman rho = 0.60, p = 0.07). Stronger correlations were observed for 
the I/O ratio of DTTm for PM2.5 and both environmental parameters, 
including indoor-outdoor differences in temperature (Fig. 4c; R2 = 0.47; 
Spearman rho = 0.69, p = 0.018) and outdoor-indoor differences in RH 
(Fig. 4d; R2 = 0.63; Spearman rho = 0.80, p = 0.004). 

Since the average indoor temperature was always greater than the 
average outdoor temperature during each sampling period, positive 
associations between indoor-outdoor temperature differences and DTTv 
and DTTm I/O ratios mean that as the indoor-outdoor difference 
increased (i.e., outdoor temperatures decreased), both the extrinsic and 
intrinsic OP of indoor PM2.5 increased relative to any changes in the OP 
of outdoor PM2.5. Combined with similar (and slightly stronger) asso
ciations between I/O DTT ratios (both extrinsic DTTv and intrinsic 
DTTm) and outdoor-indoor RH differences, we may infer that differ
ences in indoor and outdoor environmental driving forces, including 
both temperature and RH, were associated with the degree of 
enhancement in both extrinsic and intrinsic OP as ambient PM infil
trated and persisted indoors. 

As DTTm is driven largely by PM chemical composition, the stronger 
correlations observed between environmental parameters and DTTm 
compared to DTTv imply that both temperature and RH could have some 
influence in altering the fraction of redox-active substances as ambient 
PM infiltrates into the indoor environment. Due to higher indoor tem
perature and lower humidity, the water contained in the aerosol can 
evaporate, thus shrinking the aerosol after its penetration from outdoor 
to indoor environment. This shrinking of aerosols could yield into more 
concentrated redox-active components in the indoor environment, thus 
leading to a higher I/O ratio of DTTm, as shown in Fig. 4. However, a 
detailed chemical composition analysis of the PM samples will be 
required to confirm this hypothesis. 

To further explore the influences of indoor and outdoor 

Fig. 2. Time-integrated OP for indoor and outdoor PM2.5 samples in the unoccupied apartment unit: (a) extrinsic DTTv levels and I/O ratio of DTTv, and (b) intrinsic 
DTTm levels and indoor/outdoor (I/O) ratio of DTTm. 
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Fig. 3. Size-resolved I/O ratios of (a) DTTv and (b) DTTm levels. Boxes represent 25th and 75th percentiles; whiskers represent upper and lower adjacent values; 
outside values represent outliers; empty squares represent the mean; and red diamonds represent individual data points. (For interpretation of the references to color 
in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 4. Time-integrated indoor/outdoor (I/O) ratios of PM2.5 OP from the unoccupied apartment unit versus indoor-outdoor differences in environmental conditions: 
(a) I/O DTTv vs. I–O temperature differences, (b) I/O DTTv vs. O–I relative humidity (RH) differences, (c) I/O DTTm vs. I–O temperature differences, and (d) I/O 
DTTm vs. O–I RH differences. 

Fig. 5. The correlations of indoor/outdoor 
(I/O) ratios of intrinsic DTTm of size- 
resolved PM (i.e., <0.5 μm, 0.5–1 μm, and 
>1 μm) versus indoor and outdoor differ
ences in environmental conditions: (a) I/O 
DTTm vs. Indoor-Outdoor (I–O) temperature 
differences and (b) I/O DTTm vs. Outdoor- 
Indoor (O–I) RH differences. The black, red 
and blue dash lines denote the lines of sim
ple linear regression for PM0.5, PM0.5-1 and 
supermicron particles, respectively. (For 
interpretation of the references to color in 
this figure legend, the reader is referred to 
the Web version of this article.)   
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environmental conditions on the intrinsic OP (DTTm) of PM in different 
size ranges, we conducted a simple linear regression analysis on size- 
resolved I/O ratios of DTTm for the PM samples from all size bins 
(including the largest >2.5 μm bin) versus indoor-outdoor temperature 
differences and outdoor-indoor RH differences (Fig. 5). Here, we 
recombined two size bins of <0.25 μm and 0.25–0.5 μm into the bin of 
<0.5 μm (PM0.5), and another two size bins of 1.0–2.5 μm and >2.5 μm 
into the bin of >1 μm (i.e., supermicron particles), while keeping the 
particles in the moderate size range (i.e., 0.5–1 μm, PM0.5-1) as is. 
Moderate positive correlations were observed between I/O DTTm ratios 
and indoor-outdoor differences in both temperature and RH for particles 
<0.5 μm (Temperature: R2 = 0.58; Spearman rho = 0.827, p = 0.0017; 
RH: R2 = 0.69; Spearman rho = 0.915, p = 0.0002) and for particles >1 
μm (Temperature: R2 = 0.32; Spearman rho = 0.624, p = 0.05; RH: R2 =

0.58; Spearman rho = 0.717, p = 0.03). Conversely, a negative corre
lation was observed between I/O DTTm ratios and indoor-outdoor dif
ferences in both temperature and RH for 0.5–1 μm particles 
(Temperature: R2 = 0.53; Spearman rho = − 0.77, p = 0.009; RH: R2 =

0.57, Spearman rho = − 0.85, p = 0.004). These results suggest that 
intrinsic OP enhancement increased with increasing indoor-outdoor 
differences in temperature and RH only for the smallest and largest 
particles in the measured size range, while intrinsic OP decreased for 
particles in the middle of the size range (0.5–1 μm). 

This phenomenon might be attributed to size-dependent penetration 
of the particles, which could alter the chemical composition of the PM 
within these different size bins as well as the total PM. In our previous 
study at the same indoor location (Zhao and Stephens, 2017), we 
observed a decreasing infiltration factor with increasing particle size for 
particles greater than 0.3 μm, which could explain higher fraction of 
smaller particles indoors in our study (Fig. 1). Several other studies have 
also reported a greater fraction of water-soluble redox-active species 
[like WSOC (Cabada et al., 2004; Velali et al., 2016) or transition metals 
(Saffari et al., 2013)] and thus higher intrinsic OP for smaller-sized 
particles (Cabada et al., 2004; Cho et al., 2005; Lovett et al., 2018; 
Saffari et al., 2013; Velali et al., 2016). Rivas et al. (2015) also reported 
higher infiltration factors for redox-active transition metals (e.g. Cd, V, 
Zn) compared to redox-inactive inorganic ions (e.g. NO3

− and NH4
+), 

further supporting a higher I/O ratio of PM DTTm for smaller particles 
(<0.5 μm, as shown in Fig. 3). However, this hypothesis is applicable to 
only smaller particles (<0.5 μm), and we do not have a clear explanation 
for other particle sizes (i.e., those >0.5 μm). 

4. Conclusion 

Our study provides the very first comparison of indoor vs. outdoor 
levels of a biologically relevant property (i.e., OP) of ambient PM as it 
infiltrates indoors. However, there were several limitations in our work. 
First, we limited our sampling only to a single unoccupied environment 
with a relatively small sample size (N = 11). The OP of the particles in an 
occupied environment can be substantially altered by other factors, such 
as occupant movement and activities, including behaviors to modify 
both natural (i.e., opening the windows) and mechanical (turning on/off 
HVAC system) ventilation, and most importantly, the presence of indoor 
sources. Second, the long sampling duration, which was dictated by the 
requirement of sufficient mass for OP analysis, can cause some negative 
artifacts (e.g., loss of highly volatile species), thus marginally biasing the 
OP towards stable (or less volatile) PM species. Third, since the DTT 
assay is a purely chemical method, it is limited in capturing all the 
possible mechanisms involved in the generation of ROS. Our previous 
study (Xiong et al., 2017) found that the consumption rate of DTT could 
not capture the redox-activity of Fe, which was active in forming hy
droxyl radical (∙OH) in DTT via Fenton reaction (Held et al., 1996). 
Similar to the DTT assay, other OP endpoints such as the consumption 
rate of ascorbic acid and glutathione also show different sensitivities 
towards transition metals (Ayres et al., 2008; Künzli et al., 2006; Mud
way et al., 2005) and organic species (Calas et al., 2018) in PM. 

Therefore, a better assessment of OP can be obtained by employing 
different OP endpoints in addition to the DTT assay. Finally, due to 
limited mass available on the filters, we could not conduct any chemical 
analyses of the collected samples. Despite these limitations, our results 
indicate that the shifts in the OP of ambient PM as it infiltrates indoors, 
enhanced by the magnitude of differences in indoor and outdoor envi
ronmental (temperature and RH) conditions, may be occurring due to 
transformation processes that influence chemical composition differ
ently across different PM sizes, such as size-dependent penetration 
through the envelope (Chen and Zhao, 2011; Liu and Nazaroff, 2001; 
Zhao and Stephens, 2017), indoor deposition (He et al., 2005; Wallace 
et al., 2013), and/or phase changes(Hodas and Turpin, 2013; Johnson 
et al., 2017; Avery et al., 2019). For example, we suspect this could be 
due to the evaporation of volatile chemical components with lower OP 
as ambient PM infiltrates indoors (albeit only under some 
indoor-outdoor environmental conditions), as such evaporation may be 
enhanced on smaller particle size (<0.5 μm) that count for ~80% of the 
total mass of indoor PM2.5, leading to an overall increase on DTTm level 
of total PM2.5, or perhaps due to the temperature and/or RH dependent 
partitioning of redox-active substances to indoor-infiltrated PM. 
Broadly, these associations highlight the importance of indoor/outdoor 
PM chemical composition changes over PM mass concentrations 
changes for OP. Future work should strive to further elucidate the role of 
chemical and physical drivers, such as the presence of occupants and 
indoor sources, building characteristics, and meteorological conditions, 
in altering the OP of ambient PM as it infiltrates indoors, as well as the 
resulting net OP of the particles in the indoor environment. This in turn 
can help in better characterizing the exposure of PM2.5 to the occupants 
and relating this exposure to the observed health endpoints. 
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Norbäck, D., Payo-Losa, F., Poli, A., Sunyer, J., Borm, P.J.A., 2006. Comparison of 
oxidative properties, light absorbance, and total and elemental mass concentration 
of ambient PM 2.5 collected at 20 European sites. Environ. Health Perspect. 114, 
684–690. https://doi.org/10.1289/ehp.8584. 

Lin, P., Yu, J.Z., 2011. Generation of reactive oxygen species mediated by humic-like 
substances in atmospheric aerosols. Environ. Sci. Technol. 45, 10362–10368. 
https://doi.org/10.1021/es2028229. 

Liu, D., Nazaroff, W.W., 2001. Modeling pollutant penetration across building envelopes. 
Atmos. Environ. 35, 4451–4462. https://doi.org/10.1016/S1352-2310(01)00218-7. 

Lovett, C., Sowlat, M.H., Saliba, N.A., Shihadeh, A.L., Sioutas, C., 2018. Oxidative 
potential of ambient particulate matter in Beirut during Saharan and Arabian dust 
events. Atmos. Environ. 188, 34–42. https://doi.org/10.1016/j. 
atmosenv.2018.06.016. 

MacNeill, M., Kearney, J., Wallace, L., Gibson, M., Héroux, M.E., Kuchta, J., Guernsey, J. 
R., Wheeler, A.J., 2014. Quantifying the contribution of ambient and indoor- 
generated fine particles to indoor air in residential environments. Indoor Air 24, 
362–375. https://doi.org/10.1111/ina.12084. 

MacNeill, M., Wallace, L., Kearney, J., Allen, R.W., Van Ryswyk, K., Judek, S., Xu, X., 
Wheeler, A., 2012. Factors influencing variability in the infiltration of PM2.5 mass 
and its components. Atmos. Environ. 61, 518–532. https://doi.org/10.1016/j. 
atmosenv.2012.07.005. 

Maikawa, C.L., Weichenthal, S., Wheeler, A.J., Dobbin, N.A., Smargiassi, A., Evans, G., 
Liu, L., Goldberg, M.S., Pollitt, K.J.G., 2016. Particulate oxidative burden as a 
predictor of exhaled nitric oxide in children with asthma. Environ. Health Perspect. 
124, 1616–1622. https://doi.org/10.1289/EHP175. 

Mihucz, V.G., Szigeti, T., Dunster, C., Giannoni, M., de Kluizenaar, Y., Cattaneo, A., 
Mandin, C., Bartzis, J.G., Lucarelli, F., Kelly, F.J., Záray, G., 2015. An integrated 
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