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® Proposes an integrated data-driven framework for urban energy use modeling (UEUM).
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® The framework is demonstrated using Chicago as a case study.

® Predicts multi-scale urban energy use with acceptable accuracy.

e Examines the relative contribution of urban socio-spatial factors on energy use.
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Many urban energy use modeling tools and methods have been developed to understand energy use in cities, but
often have limitations in aggregating across multiple scales and end-uses, which adversely affects accuracy and
utility. Increased data availability and developments in machine learning (ML) provide new possibilities for
improving the accuracy and complexity of urban energy use models. This paper presents an integrated frame-
work for urban energy use modeling (UEUM) that localizes energy performance data, considers urban socio-
spatial context, and captures both urban building operational and transportation energy use through a bottom-
up data-driven approach. The framework employs ML techniques for building operational energy use modeling
at the urban scale with a travel demand model for transport energy use prediction. The framework is demon-
strated using Chicago as a case study because it has significant variations in urban spatial patterns across its
neighborhoods and it provides publicly available data that are essential for the framework. Results for Chicago
suggest that, among the tested algorithms, k-nearest neighbor shows the best overall performance in terms of
accuracy for a single-output model (i.e., for building or transportation energy use separately) and artificial
neural network algorithm is the most accurate for the integrated model (i.e., building and transportation energy
use combined). Exploratory analysis demonstrates that the urban attributes examined herein explain 41% and
96% of the variance in building and transportation energy use intensity, respectively. The UEUM framework has
the potential to aid designers, planners, and policymakers in predicting urban energy use and evaluating robust
theories and alternative scenarios for energy-driven planning and design.

1. Introduction the typically single largest contributor to urban energy use and emis-

sions, followed by the transportation sector. In the United States, the

With increasing population growth and urbanization [1], and with
greenhouse gas (GHG) emission reductions becoming a global priority,
cities are pushing for sustainability now more than ever. Cities consume
over two-thirds of primary energy resources and are responsible for
more than 70% of GHG emissions worldwide [2]. The building sector is

* Corresponding author.
E-mail address: nabbasab@iit.edu (N. Abbasabadi).

https://doi.org/10.1016/j.apenergy.2019.113550

combined building and transportation sectors account for around 69%
energy related emissions [3]. Moreover, building and transportation
energy performance are interrelated at different levels [4-5] and in-
terlinked with the urban spatial and socioeconomic context [6], which
can greatly impact urban energy use and associated emissions. In this

Received 25 February 2019; Received in revised form 23 June 2019; Accepted 13 July 2019

0306-2619/ © 2019 Elsevier Ltd. All rights reserved.


http://www.sciencedirect.com/science/journal/03062619
https://www.elsevier.com/locate/apenergy
https://doi.org/10.1016/j.apenergy.2019.113550
https://doi.org/10.1016/j.apenergy.2019.113550
mailto:nabbasab@iit.edu
https://doi.org/10.1016/j.apenergy.2019.113550
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apenergy.2019.113550&domain=pdf

N. Abbasabadi, et al.

context, integrated energy models at the urban scale are needed to
better inform designers, planners, and policymakers of current urban
energy demand patterns and to provide stakeholders with tools to
predict the energy and environmental impacts associated with different
development scenarios. However, there are a limited number of
methods and tools to do so, which often have limitations in providing a
realistic representation of urban energy use and aggregating across
multiple scales [7-9] and end-uses [4] crucial to urban environments.

The methods and tools for urban energy use modeling can be
grouped as: (1) top-down models that apply econometric or technolo-
gical approaches, use aggregated data, and generalize the status quo;
and (2) bottom-up models that use data-driven or engineering physics-
based techniques to examine urban energy use by understanding the
behavior of its components and their inter-related interactions [10-11].
The latter is the most commonly used approach for urban energy use
prediction [11]. However, shortcomings of engineering-based bottom-
up studies, which apply simulation to predict urban energy use (and can
be powerful for simulating individual buildings with independent
heating, ventilation, and air-conditioning (HVAC) systems), stem from
relying on inadequate archetypes that do not represent realistic varia-
tions of buildings across the city and simplification of context and
system data for energy modeling at urban scale [12-14]. Conversely,
data-driven based bottom-up methods rely on actual empirical energy
data and can more accurately represent urban energy use, although the
reliability of their results depends on the availability and quality of data
and explanatory variables in the model [15-17]. The limitations of the
existing literature mainly arise from applied aggregated data or gen-
eralized linear models which do not allow energy characterization at
the individual building level.

In addition, common approaches to urban energy modeling have
been limited in comprehensiveness towards defining, understanding,
and estimating urban energy use. Urban energy use modeling is often
reduced to its building operational energy component, often leaving
transportation and/or key uncertainties in system interactions un-
accounted for. This happens mainly because transportation energy
modeling is associated with a high level of complexity and uncertainty
due to the fact that a transportation energy model depends on multi-
dimensional factors of land use, and technological and behavioral as-
pects [18-19]. There also exists a limited number of studies that predict
urban energy performance through integrated analysis of networks of
buildings in urban or neighborhood contexts. In many energy studies,
the urban microclimate, as well as the interactions between individual
buildings and the city, are often overlooked, although these factors
have been shown to impact the accuracy of operational energy use
estimations at both building and urban scales [20]. Urban morpholo-
gical structure and building characteristics such as height impact urban
microclimate and urban heat island effect [21-23], shading, and wind
flow [24-25], which in turn impact urban building energy demand.

Also, previous studies tend to explore only a limited number of
aspects that can affect urban energy demand. There is an extensive
body of research that examines how urban energy use in cities is in-
fluenced by major urban attributes such as urban morphology and
density [26-27], building characteristics [28-30], occupant features
and behaviors [31-34], socioeconomic factors [35-38], and the impact
of urban density on transport energy use [30,39] via effects on human
mobility and travel modes and distances. However, there are limited
numbers of studies that examine the importance of these various po-
tential determinants of urban energy use and their relationships a
comprehensive approach. Without a comprehensive approach, the re-
sults of these studies are often not reliable or generalizable for policy-
making applications. The development of advanced data-driven artifi-
cial intelligence methods, specifically those based on machine learning
(ML) methods, combined with advances in big data and open data in-
itiatives adopted by most of the cities across the world, provide new
possibilities for improving the accuracy and complexity of urban energy
use models [40,41]. ML methods provide the opportunity to understand
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and manage urban energy use and to reveal the importance and com-
plex behaviors of different urban socio-spatial energy determinants.
However, their predictive and explanatory performance and accuracy
have not been fully understood yet.

To address some of these limitations, this research proposes an in-
tegrated urban energy use modeling (UEUM) framework that localizes
energy performance measurements, considers urban socio-spatial con-
text, and captures both urban building operational and transportation
energy use through a bottom-up data-driven approach. The framework
employs ML techniques for building operational energy use modeling at
the urban scale with a travel demand model for transport energy use
prediction. It tests the most promising ML algorithms to achieve the
most accurate model. The proposed framework views the city not as a
collection of individual buildings, but rather as a network of connected
buildings. It produces Geographic Information Systems (GIS) based vi-
sualizations that enable a realistic and multi-scale model representing
building, block, neighborhood and city levels, to communicate and
visualize the predicted urban building and transportation energy use.
Chicago is used as a case study to test the framework because it has
significant variations in urban spatial patterns across its neighborhoods
and because it has committed to long-term emission reduction goals
[42] and thus provides publicly available data that are essential for
conducting an accurate urban energy analysis with UEUM. The fra-
mework is also applicable for other cities with similar datasets.

2. Methods

This section presents the UEUM framework as a four-step model, as
shown in Fig. 1. The first phase is the Pattern Extraction phase, which
studies urban socio-spatial patterns with a certain level of detail from
available datasets to extract local variables and contextualize the
model. The second phase is the Prediction phase, which estimates urban
energy use data, including both building and transportation energy end-
uses, using various machine learning models with numerous local
variables. The third phase, the Analysis phase, uses the model results to
explain the relative contribution of each variable on urban energy use.
Finally, the Visualization phase generates visualizations of the predicted
urban energy use across multiple levels of city, neighborhood, block
and individual buildings.

As Fig. 2 illustrates, this multi-scale energy use analysis and visua-
lization presents a more accurate and holistic image of urban energy
use and the associated impacts of different spatial patterns, design de-
cisions, and energy efficiency policies. It also contributes to a low-
carbon urban transformation by identifying energy performance pat-
terns and addressing potential problems and improvement strategies at
the scales of buildings, blocks, neighborhoods, and entire cities. For
example, a building-level analysis using disaggregated data provides a
model of operational energy of buildings that can be used for energy
efficiency management and retrofit purposes, while a census block level
analysis can inform how existing or future alternative scenarios of de-
sign and planning such as changes in building height or density influ-
ence urban energy use. And neighborhood- and urban-scale modeling
aims to improve understanding of urban energy use in a manner that
can inform decision-making regarding urban morphological and spatial
patterns such as zoning, land use, accessibility, and other planning
policies that can affect the city structure and subsequent building op-
erational and transportation energy end-uses. Further, moving from the
block to neighborhood or urban scale allows for capturing inter-
building effects on energy consumption [43] and for identifying pat-
terns of energy use on a scale at which urban transformations mostly
take place and where funding opportunities for energy efficiency in-
vestments are often available [44].

2.1. Urban energy use, definition and variables

In this research, urban energy use is defined as the combination of
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Fig. 1. Conceptual framework of the integrated data-driven UEUM.

operational building and transportation energy use at city scale. Urban
transportation energy use is presented here as the amount of energy per
household required on a daily and/or annual basis for various modes of
travel including car and public transit. Urban building energy use is
defined as the annual energy used for heating, cooling, water heating,
appliances, electric plug loads, lighting, and all other building energy
end-uses. Building operational energy use intensity (EUI), as the most
common metric [45], is used to describe urban building energy use per

unit of floor area (kBtu/ft> or kWh/m?). However, it should be noted
that the effectiveness of the EUI metric (kBtu/ft> or kWh/m?) has
limitations for measurement and benchmarking purposes, especially
when occupancy and building type vary significantly [46]. An occu-
pant-adjusted EUI metric (e.g., kBtu/ft?/person-hour or kWh/m?/per-
son-hour) is considered to provide a more accurate assessment [47], but
there are also limitations regarding occupancy data availability and
accuracy that prevent usage of this metric.

Multi-Scale Energy Use Modeling and Analysis

Census Tract

Neighborhood

= Understanding a bigger picture
of urban energy use for
decision-making purposes, such
as zoning, land use, and
accessibility strategies

Urban Transport Energy Use Modeling

Urban Building Energy Use Modeling

Building level

= Capturing inter-building effects
= Identifying patterns of energy
demand

= Modeling operational energy of
buildings

Energy efficiency management
Retrofit purposes

Fig. 2. Multiple scales of UEUM.
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Table 1
Key determinants and variables incorporated in the urban energy model.
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Category Variable

Unit

Independent Variables  Building Characteristics
Building type
Year built
Urban Attributes
Distance to CBD
Household size
Worker density

Occupancy Characteristics

Percentage of occupied units

Weekly working hours

Total number of occupants
Unemployment (% of unemployed persons aged 16 years or older) -

Socioeconomic Indicators

Building height (number of floor)
Building size (gross floor area)

Number of floors
ft* (m?)

Sprawl index (urban density, accessibility, connectivity, and land use mix) -

Education (% of persons aged 25 years or older without a high school diploma) -

Income (per capita)

Dependency (% of under 18-year-olds or over 64-year-olds population) -
Poverty (% of households below poverty level) -
Crowded housing (% of occupied units with more than one person per room) -

Mode of travel
Travel distance
Transit-oriented
Walkability
Bikeability

Site EUI

Mobility & Travel Patterns

Dependent Variables Building Operational energy use

Transportation energy use

Transportation EUI (of household)

kBtu/ft?/year (kWh/m?/year)
kBtu/HH/year (kWh/HH/year)

The urban building and transportation energy use determinants
related to the scope of this research are classified into five main cate-
gories: (a) Building Characteristics (BC), consisting of variables such as
building number of floors, building size, building type, and year built;
(b) Urban Attributes (UA), consisting of urban density, connectivity,
accessibility and land use mix, which are presented through urban
sprawl index [48] and distance to the Central Business District (CBD)
representing the location; (c) Occupancy Characteristics (OC), including
household size, worker density, percentage of occupied units, weekly
working hours, and total number of occupants; (d) Socioeconomic In-
dicators (SI) representing factors such as unemployment, education,
dependency, income, poverty level, and crowded housing, and (e)
Mobility and Travel Patterns (MTP), which include factors such as mode
of travel and travel distance and neighborhood features representing
transit-oriented, walkability, bikeability variables. Table 1 shows the
list of key variables of interest in the model for urban building and
transport energy use.

2.2. The UEUM workflow

Fig. 3 shows the UEUM workflow, which proceeds into the fol-
lowing steps:

2.2.1. Data preparation

First, data preparation was conducted, which includes coupling the
data required for the framework and cleaning and processing the data.
The UEUM database is built upon a merged Urban Attributes and
Energy (UAE) dataset representing physical characteristics of buildings,
urban socio-spatial patterns, building operational energy use data, and
travel and mobility data. The major datasets used in UAE dataset con-
tain geo-referenced data which allow for construction of an integrated
dataset for energy use analysis at building-level. Data processing is the
next step after locating data which includes several statistical techni-
ques to clean data, handle missing data [49], test the model regarding
normality [50], non-parametric analysis [51], multicollinearity [52],
and feature selection [53]. These methods will be explained in more
detail in Section 2.3, which describes the application of the framework
to the city of Chicago. Both building and transportation EUI data are
transformed to the natural logarithm, i.e., Log Site EUI (in kBtu/ft?/
year or kWh/m?/year) and Log Transportation EUI (in kBtu/household

(HH)/year or kWh/HH/year) to properly normalize the distributions
and decrease the variability of data.

2.2.2. Pattern extraction

The available data is studied to detect and combine local properties
representing contextualized urban patterns. The k-means clustering
algorithm, which represents an efficient clustering method [54], was
applied to define the typology (archetype) of buildings from the real
urban context. Clustering enables grouping data into multiple classes in
which the inner group similarity and inter-group dissimilarity of objects
must be maximized. The maximization or optimization process can be
performed using expectation maximization (EM) or k-fold algorithms.
The k-means clustering allows grouping buildings with certain simila-
rities for example, the building height typologies or different building
sizes based on their energy consumption behavior [55]. The k-means
has limitations such as it is sensitive to outliers in which determining
the number of clusters may change the outcomes significantly. k-means
is also a spatially-dependent algorithm in which rearrangement of data
can affect the results for the same data.

2.2.3. Prediction

The prediction phase computes energy performance of urban
buildings and transportation end-uses, which encompasses the model
training, validation, comparison, and prediction. Several statistical and
ML methods were tested and compared in terms of their energy pre-
dictive performance including Multiple Linear Regression (MLR),
Nonlinear Regression (NLR), Classification and Regression Trees (C&
RT), Random Decision Forest (RDF), k-Nearest Neighbors (k-NN), and
Artificial Neural Networks (ANNs) which are among reliable and ap-
plicable data-driven methods [41,56-58]. For transportation energy
prediction, a travel demand model is also developed as the bases for the
transportation energy data.

In previous studies, the MLR model has commonly been used for
both building and transportation energy use modeling because it is
easily interpretable and computationally efficient [41]. The coefficient
in MLR is interpreted as how a unit of change in an independent vari-
able leads to changes in the unit of dependent variable. However, it has
limitations to capture non-linear and complex patterns and is also
sensitive to outliers [59,60]. This study tested the MLR algorithm as a
commonly used method and for the purposes of comparing with several
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Fig. 3. UEUM workflow.

ML algorithms used for urban energy use modeling.

In this research, the ANNs [61] method, as a well-established ML
algorithm, was tested and compared with other methods for effective-
ness. ANNs is based on computational networks inspired from biolo-
gical neural systems and calculates the tasks vaguely with no pre-as-
sumptions about that system. ANNs generate and connect a network of
input, hidden, and output nodes which has a remarkable capability in
capturing complex nonlinear patterns between output and input vari-
ables [62]. Each neuron is made up of the summation function, acti-
vation function, bias, weights, inputs, and outputs. In this research, the
Multi-Layer Perceptron of Artificial Neural Networks (MLP-ANN) model
was used. The topology of the network comprises of 22 explanatory
variables in including continuous, binary, and categorical neuron types
with a single hidden layer, and a single node in the output layer. The
activation function of the hidden layer and output layer are tanh and
identity, respectively. In this article, an ensemble approach (51 net-
works) for training the model was implemented and the network with
the highest performance was selected for the prediction.

k-NN [63] is another algorithm tested for effectiveness in this re-
search. Similar to ANNs, k-NN [63] stands as a versatile ML technique
that is used for solving both classification and regression problems on
non-linear data. However, k-NN has been rarely applied for urban en-
ergy use modeling so far. The k-NN’s learning process is implemented
through memorizing the training data rather than using the dis-
criminative functions. This characteristic enables k-NN to discover
unseen data via the training dataset for the most similar k-neighbor
instances, while it makes the model to be considered as a lazy learner
among all ML methods. Meanwhile, k-NN needs a large number of in-
stances to provide more accurate results. Another algorithm tested in
this article is C&RT [64], which is one of the intuitive models that can
be used for both classification and regression problems. CR&T’s simi-
larity to the human reasoning process enables them to act as white-box
models since the training process can be easily visualized. C&RTs are
classifier trees when the response variables can only take discrete va-
lues (categorical) and are regressor trees when the target parameters
can take real numbers. C&RTs can also solve the missing value pro-
blems. RDF [65] algorithm was also tested, which is a flexible, high-
speed execution, and easy-to-use machine learning regressor and clas-
sifier model. Indeed, RDF model builds up a set of decision-trees based
on a random and independent selection of subsets of the data in
growing the trees and then merge all of them together. The number of

trees in this model was set as 100 and the number of variables for nodes
are optimized in the train process. A distinctive difference between RDF
and the traditional data-driven techniques is that RDF processes the
data with making no prior assertions on the structure of the data or
correlations between x and y variables. RDF is also less sensitive against
spatial autocorrelation as well as multicollinearity problems.

2.2.4. Validation

Cross-validation (CV) [66], which has been shown to be an effective
method [58,67], was applied to calculate the accuracy of the model
prediction results. A 5-fold CV was used and the regularization para-
meter was tuned on the validation set to achieve the best prediction
performance based on splitting data into train (80%) and test (20%).
The standard predictive performance metrics including the Mean Ab-
solute Error (MAE), Mean Square Error (MSE), Root Mean Square Error
(RMSE), Mean Absolute Percentage Error (MAPE), and R-squared (R?
were calculated as formulated in the following Egs. (1)-(5) [58,68] to
compare the models:

1 n
MAE = ; Zi:o lyPredict,i - yac[ual,il

(€]
1 n )
MSE = ; Ei:o (ypredict,i - -){lctual,i) o)
RMSE = 1 Z” \/ Z:in:o (yprcdict,i - Jﬁcmaz,i)z
n e n ©)
Voredicri — I ;
MAPE(%) = l Zn_ Jpredict,i — Jactual,t x 100
h i=0 J{zctual,i (4)
2 Zin=0 (ypredict,i - chtual,i)z
R=1- = : .
Zizo Oteati — Factuat) (5)

where y,.q; and Yo, denote the actual and predicted EUI at ith
observation, ., denotes the average EUI and n denotes the entire
number of observation within the dataset.

Finally, the models are compared, and the best model is proposed
for a predictive model to compute the energy use for an output of
sample model and an integrated explanatory model of building and
transportation end-uses. The models were validated against actual en-
ergy data and compared against peer simulation and data-driven
models from the literature.
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2.2.5. Analysis
The analysis phase focuses on how key urban attributes affect urban
energy use using the integrated model.

2.2.6. Visualization

GIS-based 2D and 3D visualizations were developed to commu-
nicate the results of urban building and transportation energy use
modeling and analysis at multiple scales of individual building, block,
neighborhood, and city scales. R software [69] was used for urban
energy use statistical computing and graphics.

2.3. Application of the UEUM methodological framework to the City of
Chicago

The UEUM framework was applied for Chicago, IL and its 77
communities (i.e., neighborhoods) that define the geographical divi-
sions of Chicago. This study used communities (i.e. neighborhoods) as
boundaries because the City of Chicago and Census data are mainly
available for these community areas. The present research includes
820,606 buildings across different neighborhoods in the city which
their building characteristics information is available in the current
GIS-based dataset for Chicago [70].

2.4. Construction of urban attributes and energy (UAE) dataset

The UAE dataset for Chicago is constructed by merging several
datasets as listed in Table 2 and explained in further detail into the
following section:

2.4.1. Geo-Referenced building data

The publicly-available Chicago Building Footprint (CBF) dataset
[70] was used as a geo-referenced building dataset which represents a
compilation of building characteristics and geographic data for Chi-
cago. The CBF dataset provides building-level data that contains the
spatial characteristics such as building type, building number of floors,
Gross Floor Area (GFA), year built, and location. However, this dataset
does not contain data on other variables such as building renovation
year and building Floor Area Ratio (FAR) which are reported in similar
datasets for other cities such as the New York City’s Primary Land Use
Tax Lot Output (PLUTO) dataset [71]. This study also used zoning
districts data [72] and property tax data [73] from the Assessor’s Office
for gaining further information such as property type and age. Despite
of the CBF limitations, this dataset is the only and the most complete
available dataset for building characteristic data in Chicago, and
therefore, this research combined several datasets to complete the
missing data across different datasets and build a dataset that would
have data on both physical characteristics and operational energy use of
buildings.

The merged dataset represents three building types including

Table 2
The main datasets used to construct the UAE dataset.
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residential, commercial, and industrial. Residential buildings are re-
presented by single-family, multi-family with less than seven units, and
multi-family with seven or more units. Table 3 lists the type and fre-
quency of buildings in the sample. Table 4 presents the descriptive
information related to building characteristics and occupancy features
for the buildings in the sample.

2.4.2. Geo-referenced urban attributes data

The sprawl index is used as an indicator of multiple aspects of urban
attributes, including density, accessibility, and land use mix. The geo-
referenced urban attributes dataset in this research includes the Urban
Sprawl dataset [74] for the United States developed by Ewing [48,75]
prepared for National Cancer Institute [74], which is based on the 2010
Census data and is available at four data levels: census tract, urbanized
areas, Metropolitan Statistical Area (MSA), and county level. The
sprawl index here represents: (a) Density, measured by several variables
including population density of the census tracts area, the percent of the
population living in low-density and medium- to high-density areas, the
weighted density showing the density around the center of the Me-
tropolitan Statistical Area (MSA), urban density within total built-upon
land, and employment density; (b) accessibility, quantified by street
network variables including average city block size, percent of urban
blocks, average length of street blocks, the density of street intersec-
tions, and percent of different intersections defined as the street con-
nectivity score; (c) The land use mix, captured via combining two
variables including the job balance of total population and the job type
mix of census block groups, and the Walkability score at census tract
level; (d) Activity centering, quantified through the proportion of po-
pulation and employment size in block groups, the ratio of amount of
jobs and population of the CBD; and the speed of the population density
declines from CBD [48]. In this research, the census tract level was
used, as it is the smallest subdivision, approximately equivalent to a
neighborhood, including a population of 2500-8000 [76].

As shown in Table 5, the sprawl index in Chicago neighborhoods
varies from a minimum value of 87.46 to a maximum of 188.45, with a
mean of 132.92 and standard deviation of 10.44. Larger values of
sprawl index represent a higher degree of compactness and connectivity
similar to those experienced in downtown areas. For example, River-
dale represents the most spread-out among Chicago neighborhoods
with the lowest sprawl index (87.46) while the Loop represents the
most compact and connected with the highest sprawl index (188.45). In
this research, the mobility factors incorporated in the model represents
neighborhood walkability, bikeability, and transit-oriented indices
which are extracted from [77].

2.4.3. Socioeconomic indicators data

In order to provide a quantitative analysis of the relationship be-
tween socioeconomic patterns on two main components of urban en-
ergy use (building and transportation) at the same time, socioeconomic

Type of data used in constructing the UAE dataset Data source

Geographical location and building characteristics

Sprawl index
Energy data

Transportation data

Chicago building footprints (CBF) dataset [70]

Chicago boundaries and zoning districts [72]

Property tax data from the Assessor’s Office [73]

Urban Sprawl data for the Unites States [74]

Chicago Energy Benchmarking dataset [79] (2717 buildings greater than 50,000 ft?)

Chicago Energy Usage dataset [80] (65,378 buildings of all sizes)

Chicago Regional Household Travel Tracker Survey by CMAP [81]

Fuel Economy data [82] by the U.S. Department of Energy (DOE)

Average passenger transportation energy intensity per mile travel from the U.S. Department of

Transportation (DOT) Bureau of Transportation Statistics (BTS) [83]
Mobility factors including neighborhood walkability, bikeability, ® Walkability, bikeability, transit-oriented score [77]

and transit-oriented indices

Socioeconomic indicators ® Socioeconomic indicators dataset [78]
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Table 3
Building type, sub-type and their frequency in the dataset.
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Building Type Building Subtype

Commercial Municipal Industrial Multi 7+ Multi < 7 Single Family Total
Residential 0 0 0 2192 19,213 25,506 46,911
Commercial 4864 154 0 1652 4609 0 11,279
Industrial 0 0 15 0 0 0 15
Total 4864 154 15 3844 23,822 25,506 58,205
Table 4
Building characteristics and occupancy features for the buildings in the dataset.
Variable Observations Mean Standard Deviation Min Max
Building Height 58,205 1.87 2.20 1 110
Building Size (Gross Floor Area) 58,205 35,820 (ft%) 116,948 (ft) 300 (ft) 6,143,038 (ft)
3328 (m?) 10,865 (m?) 28 (m?) 570,707 (m?)
Year Built 58,205 1935.27 31.81463 1852 2014
Total Occupants 58,205 83.90 84.65 0 3000
Average Household Size 58,205 2.34 1.39 0 9
Occupied Unit Percentage 58,205 87% 13% 0% 100%
Table 5 The present study used this dataset because it provides data for build-
Sprawl index at the census tract level in Chicago. ings smaller than 50,000 ft?>, which are not included in the Chicago
Variable Observations Mean  Standard Deviation  Min Max Energy Benchmarking datasets. T}.le .merg.ed b.ulldlr}g operatlo.nal en-
ergy use dataset represents all building sizes in Chicago and is large
Sprawl Index 58,205 132,92 10.44 87.46  188.45 enough to be used for developing representative statistical models.

indicators dataset [78] was used, which represents six socioeconomic
factors of public health significance including income, employment,
education, dependency, poverty level, and crowded housing level as
discussed in Section 2.1. This dataset provides the data for Chicago
communities for the years 2008-2012.

2.4.4. Building operational energy use data

The operational energy use dataset for the purpose of this research
was constructed by merging of two unique datasets including Chicago
Energy Benchmarking (2016) [79] and Chicago Energy Usage (2010)
[80] datasets. The Chicago Energy Benchmarking dataset contains a
building identifier number with an exact geographical location which
allows for investigation at actual building-level. The data in this dataset
is self-reported by building owners. The dataset contains annual energy
utilization, energy star, and GHG emission data for buildings of dif-
ferent types. This dataset is reported in 2017 and includes energy uti-
lization data for 2717 buildings in Chicago which represent about 1% of
Chicago buildings and around 20% of building energy use in Chicago.

This study coupled the Chicago Energy Benchmarking dataset with
the Chicago Energy Usage (2010) dataset, which provides energy use
data for 65,378 buildings of all building sizes and various types in-
cluding residential, commercial, and industrial buildings in Chicago.
This dataset represents 68% of overall electrical usage and 81% of all
gas consumption in Chicago in 2010. The Chicago Energy Usage (2010)
data can complement other spatial and energy datasets as it contains
many relevant variables including the census block, population, phy-
sical characteristics, floor area, average stories, average building age,
and occupancy features. However, this dataset displays buildings at
census block level, without providing a further geographic identifier.

Table 6
Summary statistics of building site EUI used in the model.

Site EUI (expressed in kBtu/ft?>/year or kWh/m?/year) is used as the
main metric for energy use in this research because it allows for com-
parison of buildings across various neighborhoods and across energy
datasets. Table 6 tabulates the Site EUI values for the building cases in
the UAE dataset. The histograms in Fig. 4 illustrate the distribution of
site EUI and Log site EUL The figures show the site EUI data are ap-
proximately lognormally distributed. Thus, building EUI data are
transformed to the natural logarithm, i.e., Log Site EUI, to properly
normalize the distributions and decrease the variability of data.

2.4.5. Travel demand (TD) and transportation energy use (TEU) data
The Urban Transportation Energy (UTE) model is developed using a
variety of inputs including travel demand information and transporta-
tion EUI data for various modes of travel. We use the latest Chicago
Regional Household Travel Tracker Survey [81] for travel demand
modeling. This dataset is a detailed travel and activity survey con-
ducted by the Chicago Metropolitan Agency for Planning (CMAP) in
2007-08. The dataset includes daily travel information conducted in
either 1-day or 2-day surveys for 23,808 individuals who resided in
10,552 households in the northeastern Illinois region (e.g., Cook, Lake,
DuPage, Kane, Kendall, Grundy, McHenry, and Will Counties). The
surveys have been weighted in 2016 by CMAP to remain consistent
with Census estimates and represent the travel made by the households
and the population in the region. The weighted surveys included the
supplemental survey weights and corrected distance traveled values.
The dataset includes required travel details such as mode choice,
trip purpose, and distance, as well as demographic information. The
detailed data include mixed-mode trips with car, bus, subway, and rail
transit. It also provides manufacturing information about the vehicles
(e.g., year, make, model). The distance calculations are based on the
actual location information provided in the survey responses. However,

Variable Observations Mean

Standard Deviation Min Max

Building site EUI 58,205 67.29 (kBtu/ft%)

212.28 (kWh/m?)

30.01 (kBtu/ft%)
94.68 (kWh/m?)

10.65 (kBtu/ft?)
33.60 (kWh/m?)

540.00 (kBtu/ft?)
1703.48 (kWh/m?)
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Fig. 4. Histograms of site EUI and Log site EUI (i.e., natural logarithm of site EUI) overlaid with a normal distribution curve.

in the public dataset the location data is anonymized by the centroid of
the resident census tract. The distance value represents the direct/
straight distance between the origin and destination locations (not a
street network-based distance) for each trip segments, measured in
miles. The total value of distance traveled by each household is esti-
mated by summation of all single or mixed-mode trips per trip mode for
each person in the household.

The mode-based transportation energy use per household for light-
duty vehicles and private cars was estimated via the Average Miles Per
Gallon (MPG) for automobiles from Fuel Economy dataset reported by
the U.S. DOE [82], and for public transit through using average pas-
senger transportation energy intensity per mile travel from the U.S.
DOT Bureau of Transportation Statistics (BTS) which provides the an-
nual average transport energy intensity per passenger through the Na-
tional Transportation Statistics database [83]. This approach uses an-
nual statistics, such as fuel or electricity which is the most available
public transportation EUI factor calculated on an annual gross average
basis, to estimate the transport energy use per passenger-mile. Table 7
and Fig. 5 show summary statistics and distributions of the estimated
transportation energy use in Chicago in kBtu/household (HH)/year or
kWh/HH/year. Again, the transportation EUI data are transformed to
the natural logarithm, i.e., Log Transportation EUI, to be consistent
with building site EUI

2.4.6. Data cleaning and processing

2.4.6.1. Process & clean data. The available building, urban, and energy
datasets contain considerable amount of errors, missing values, and
outliers as extreme and beyond the normal range of observations with
respect to independent or dependent variables. In the first step, three
groups of errors in the dataset were visually identified and dropped
from the dataset: (a) cases with multiple ID numbers; (b) cases with
zero or null values; and (c) cases with multiple entries. In the next
phase, the potential extreme outlier cases were detected through
statistical tests. Then the influence of those potential outliers was
evaluated on individual regression factors and the outliers with
substantial effect were removed.

In order to identify potential outliers, residuals and standardized
residuals were predicted and the residuals beyond the range of —2 and
+2, as the threshold, were considered as indicators for likely outliers
[84]. It should be noted, however, that + 2 threshold was not treated as

Table 7

§_
g_

Frequency
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Transport EUI (kBtu/HH)

I Frequency/Density | Transport EUI (KBtu/HH)

Fig. 5. Histogram of transportation EUI (per household) with a normal dis-
tribution curve overlaid.

an absolute threshold. The Cook’s Distance test [85] was used to assess
the influence of the outliers on overall regression results. The Cook's
Distance tests the influence of a given case on all the fitted values. A
high Cook’s Distance reflects high residual and its leverage. The Cook
Distance value of less than 1 indicates that the influence is not sig-
nificant [85] and the cases with such values were not dropped from the
dataset, even though they may have been identified as outliers in pre-
vious steps. Also, the influences of individual cases on individual re-
gression coefficients were assessed through the DFBETAS test using Eq.
(6) [86]:

ldfbl > /N (6)

where N denotes number of observations.

The final UAE dataset was constructed by merging several datasets
including CBF dataset, urban attributes dataset, Chicago Energy
Benchmarking dataset, Chicago Energy Usage dataset, travel demand,
and the estimated transportation energy use dataset. The merged UAE
dataset contained data on 58,205 building cases of all types, residential
and non-residential, in which data for transportation model was
available at household level, leaving 46,843 observations in the

Summary statistics of estimated Transportation EUI (per household) in kBtu/HH/year (kWh/HH).

Variable Observations Mean

Standard Deviation Min Max

Transportation EUI 46,845 49,975 (170,516)

9684 (33,041) 28,171 (96,121) 73,035 (249,194)
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transportation model dataset. It should be noted that the travel dis-
tances of two standard deviations higher than the mean were elimi-
nated from the dataset which represent less frequent long-distance
trips.

2.4.6.2. Treat missing data. We tested several statistical methods to
treat missing data and maximize the available information, including
Multiple Imputation (MI) with predictive mean matching algorithm
[49]. This method analyzes data and replaces missing values according
to valid frequency inference. For example, the CBF dataset has an
extensive amount of missing data such as ‘number of floors’
information. To treat this missing piece of information, the predictive
mean matching method was applied to ‘guess’ the missing values by
considering available information on several variables including
location which provide (x,y) coordination, neighborhood, building
footprint, Gross Floor Area, year built, building type, and number of
units.

2.4.6.3. Model normality test. The model normality test was performed
to evaluate the model in terms of normal distribution and the shape of
residuals and distribution of errors. The main limitations of regression
models stem from their performance dependency on explanatory
variables, and size and consistency of training data. The model
accuracy is affected by insufficient or mis-specified core independent
variables in the prediction or training model. Otherwise, it may lead to
over-fitting or generalization beyond training range. We used Normal
Quantile-Quantile (Q-Q) plot for detecting normal distribution which is
an effective and mostly used normality test [50]. Fig. 6 illustrates the
results of the normal Q-Q test on our constructed merged Urban Spatial
and Energy (USE) dataset for building EUI (Fig. 6a) and transportation
EUI (Fig. 6b). A slight deviation from normality is observed in the tail.
We interpret the model in this research as a model that its normal
distribution is still acceptable however not as a perfectly distributed. As
explained in previous sections, + 2 were not treated as an absolute
outlier threshold and the Cook's Distance test was used to assess the
influence of the outliers on overall regression results. Those
observations were kept in the model mainly because excluding them

Log. Building EUI Normal Q-Q
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Table 8
Selected variables in the model and the variance inflation factor (VIF) values.
Original Variable Name Abbreviation  VIF
X1 Sprawl index SPI 1.64
X2 Multifamily building with less than 7 units MFL7 binary
X3 Multifamily building with more than 7 units MFG7 binary
X4 Single family house SF binary
X5 Height HGT 1.71
X6 GFA GFA 1.75
X7 Year built YRB 1.21
X8 Total occupants TOC 7.15
X9 Total units TUT 7.04
X10  Percentage of occupied units POU 1.27
X11  Average household size AHS 1.72
X12  Per capita income PCI 7.01
X13  Percentage aged over 16 unemployed P16U 5.99
X14  Percentage of aged over 25 without high school P25D 9.97
diploma
X15  Percentage aged under 18 or over 64 P1864 7.68
X16  Percentage of households below poverty PHBP 5.11
X17  Percentage of housing crowded PHC 7.36
X18  Daily VMT VMT 2.40
X19  Distance to CBD CBD 4.87
X20  Transit-oriented score TOS 6.32
X21  Bikeability score BIS 4.77
X22  Walkability sore WKS 5.18

meant eliminating some classes of building height (98-, 100, and 110-
story buildings) that were important to the objectives of this research.

2.4.6.4. Non-parametric analysis. The non-parametric analysis which
assumes a non-normal distribution was also performed to test the
hypothesis for the equality of the building site EUI distribution across
all building typologies. The Kruskal-Wallis H test [51], a multiple-
sample type of Wilcoxon test [87], was conducted to determine if the
building site EUI was significantly different across for example, building
height typologies. Kruskal-Wallis H test revealed statistically significant
variance in site EUI (kBtu/ft?) across height typologies. Chi-squared for
the model with all building types was shown to be 8799.672
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Fig. 6. Normal Q-Q plot: The results of Normal Q-Q test for (a) building EUI and (b) transportation EUI of our constructed merged Urban Spatial and Energy (UAE)

dataset.
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(p = 0.0001). Chi-squared for the model with only residential mix-use
buildings was shown to be 10487.339 (p = 0.0001). The results suggest
that in both the model for all building types and the model for
residential mix-use buildings, there is significant difference in site EUI
across height typologies.

2.4.6.5. Feature selection. The Variance Inflation Factor (VIF) [88] as a
feature selection technique was applied to test the model regarding
multicollinearity and to select variables in the model. Table 8 shows the
results of VIF. The VIF represents the variance inflation of variable and
1/VIF represents tolerance as VIF value greater than 10 or 1/VIF values
lesser than 0.1 may need additional analysis. The results of
multicollinearity test in which all VIF values are under 10 and
acceptable to be used in the model.

2.5. Urban energy use modeling

The predictive model is first implemented to estimate urban
building energy use for both residential and non-residential buildings
for which their energy consumption is not available. The model is ap-
plied using the merged data of 58,205 observations to predict the
building EUIs for 820,606 out-of-sample buildings of all types in
Chicago whose building characteristics are available in the CBF GIS
based-dataset but whose energy data are not available. It also develops
a travel demand model to estimate transportation energy use per
household. Next, an integrated building and transportation model is
developed to model the two main components of urban energy use si-
multaneously and to explore the contributions of each variable in the
model, including key urban attributes such as building characteristics,
urban spatial pattern, occupancy characteristics, and mobility and
travel patterns. Since data for the urban transportation energy model is
available only at the household level, and residential and non-re-
sidential buildings show different energy behaviors, the predictive and
explanatory models are outlined separately. Fig. 7 presents the work-
flow of the data-driven urban energy use prediction model.

2.5.1. Urban building energy use modeling

The urban building energy use modeling is executed to predict en-
ergy use values using regression function as a supervised problem from
response variables as discussed above. The urban building operational
EUIL, UBEU]I, is predicted using Eq. (7):

UBEUL = f (8,BC;, B,UA;, B; OC) %)

where BC, UA, and OC, denote Building Characteristics (including
building height, building type, gross floor area, and year built), Urban
Attributes (including sprawl index), and Occupancy Characteristics
(including average household size, worker density, operating hours,
total number of occupants, total number of units, percentage of occu-
pied units).

The machine learning methodology is first used to identify the re-
lationships between the independent variables, including building
characteristics, urban attributes, and occupancy characteristics, and the
dependent variable, including site EUIL, as trained on the UAE dataset.
The patterns of mathematical relationships of the trained dataset are
then used to predict energy use for building cases out of sample for
which energy data are not available. The accuracy of the model could
be increased by including more related independent variables.
However, variables that are not well disaggregated may increase the
margins of error in the model. In this framework, occupant behavior-
related variables are excluded due to the lack of data availability.

2.5.2. Travel demand modeling and transportation energy use prediction
The transportation energy prediction model was developed in two
steps: (a) travel demand modeling and (b) transportation energy pre-
diction. The mileage traveled by households was determined by sum-
ming all segmented trips from origin to destination based on different
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transit-based modes including auto, bus, subway, rail commuter for
each person in the household. Once the travel mile per person for each
journey was calculated, the daily travel mileage of each household,
each census tract level, and each neighborhood were totaled. For the
two-day surveys, travel miles were summed and the average per day
was determined. In the weighted dataset for the single day surveys, an
equal value was applied while for the two-day surveys if both days were
weekdays then the survey weights were with a value equal to 0.5. For
two-day surveys including only one weekday, the weekend day in-
formation was excluded from the analysis and the weekday data was
applied a weight value equal to one. The total TM values per household
is formulated in the Equation (8):

™y =3, > T™i ®)

where TMp,, n, i, and TMi denote daily Travel Miles per household,
number of individuals in household, mode of travel, and daily travel
miles per individual per mode of travel, respectively.

Transportation EUI was then estimated for different modes of travel
across various neighborhoods. The urban transportation EUI is pre-
dicted through incorporating miles traveled, fuel economy of different
modes of travel, and energy intensity factors per mode of travel. This
method which has been employed by previous studies yields an effec-
tive transport energy estimation [27,89]. We adopted this method to
estimate urban transportation EUI, UTEUI, for each neighborhood in
kBtu/HH using the Equation (9):
UTEUL = )" TM % TEUI ©)
where UTEUI, TM and TEUI denote the Urban Transportation EUI per
household, Travel Miles (for different modes), and Transportation En-
ergy Intensity per mile of travel, respectively.

Once the daily transportation energy use per person for each mode
was determined, the daily transportation energy use of each household
was estimated. The daily transportation energy use per household for
each census tract was estimated by summing all the total value of
transportation energy of households and dividing by number of sam-
pled households in the census tract. In the next level of analysis and
mapping, the average values of the transportation energy use per
household centroid of census tract were calculated and assigned to the
associated neighborhoods as the median transport energy use of each
neighborhood. Daily energy use values were scaled to annual use with a
factor of 261 because of the exclusion of travels on weekends. The
energy use of non-motorized modes of travel including walking and
biking was assumed to be 0.

2.5.3. Integrated building and transportation energy model

Next, the building energy use model is integrated with the trans-
portation energy model to provide a more comprehensive model of
urban energy use that includes both significant energy use contributors
in cities. We tested several machine learning algorithms to identify the
best performing model(s) that enable integrating the two energy end-
uses and that capture the complex and non-linear relationships between
urban key attributes and urban building and transportation energy
dynamics across neighborhoods in the city simultaneously. For ex-
ample, the ANN model is a robust technique that enables capturing non-
linear patterns. However, it has limitations in terms of interpretability
and quantifying the relative contribution of input variable on response
variable, which makes ANN a black-box model [90]. There are methods
that can be extended to ANN to add the explanatory capabilities of this
algorithm and allow for quantifying the relative contributions of each
variable in the model. Gevrey et al [91] provide a comprehensive re-
view on explanatory capacities of ANN models. A well-known review
article [91] discusses several methods for explaining the contribution of
independent variables on dependent variable in an ANN model in-
cluding: PaD (Partial Derivatives/Dependence), Weights, Profile, Clas-
sical stepwise, and Improved stepwise. We used the Weights method,
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Fig. 7. The workflow of the data-driven urban energy use modeling.

which applies the connection weights. Garson algorithm [92] and
Olden algorithm [93] are two popular algorithms for importance
variable based on the Weights method. Fischer [94] suggests that
Garson's model is preferable to the Olden’s method. In this research, we
employed the Garson algorithm for explaining the relative contribution
of each variable on urban building and transportation energy use.

3. Results and discussion
This section presents the results for (1) the urban building energy

use model and (2) the integrated building and transportation energy use
model, separately.
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3.1. Urban building energy use model

This section presents results of model effectiveness and energy
prediction of the data-driven urban building energy use model for
Chicago at multiple scales. The models, including the MLR, NLR, RDF, C
&RT, k-NN, and ANNs algorithms, were tested across the merged da-
taset of 58,205 observations to identify the best model for predicting
building EUIs for the 820,606 out-of-sample buildings in Chicago for
which energy use data is not available. The models were executed for
predicting the EUI of all building types, including both residential and
non-residential buildings. The models incorporate three major energy
use factors: building characteristics (building height, type, size, and
age); urban attributes representing building location and sprawl di-
mensions; and occupancy characteristics (total number of occupants,
household size, worker density, weekly working hours, and percentage
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Table 9
Performance evaluation of the predictive models for urban building energy use
in Chicago.
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Table 10
Reported data-driven error range as an accuracy metric for multiple previous
studies of urban building energy use.

MLR NLR RDF C&RT k-NN ANN
R2 0.28 0.29 0.33 0.42 0.75 0.33
MAE 0.22 0.21 0.21 0.20 0.08 0.21
MSE 0.09 0.09 0.09 0.08 0.04 0.08
RMSE 0.31 0.30 0.29 0.28 0.19 0.29
MAPE (%) 5.35 5.14 5.14 4.87 1.83 5.16

of occupied units). Table 9 presents the predictive performance as-
sessment of the models reporting on the MAE, MSE, RMSE, and MAPE
performance metrics as defined based on measuring the errors between
the predicted and actual values, as discussed in the methodology sec-
tion. The lower the values of these metrics the better predictive per-
formance of the model. The results suggest that k-NN and MLR re-
present the overall best and weakest predictive performance compared
to the other models tested here, respectively. The C&RT, ANN, RDF, and
NLR models were the next best performing models after k-NN, respec-
tively. As shown in Table 9, k-NN model shows a MAPE of 1.83% while
C&RT shows a MAPE of 4.87%, ANN, RDF, and NLR showed a MAPE of
5.14%, and MLR presented a MAPE of 5.35%. The results indicate that
k-NN is able to decrease the error by 62%, relative to C&RT and 64%,
relative to ANN, RDF, and NLR. The results of this study indicate that
using k-NN model compared with MLR, which is the most commonly
utilized method in previous studies for data-driven urban energy pre-
diction, enhances the accuracy of the model, decreasing MAPE by 66%.
For example, in our MLR model, the resulting R value of 0.28 indicates
that the model explains 28% of the variance in building operational
EUL Conversely, our results show that among the tested models, k-NN
provides a significantly improved model with R? of 0.75, as calculated
based on actual vs. predicted energy use values. In other words, k-NN is
able to explain 75% of the variation in building energy use in the
model.

The k-NN model has been rarely applied in previous studies for
urban energy use prediction. The few previous studies that applied k-
NN are mainly time-series models. For example, two prior studies
[95,96] confirm the enhanced accuracy of k-NN using time-series data
for electricity demand forecasting compared with other conventional
statistical models. In a peer data-driven study [97], an energy model
was developed for New York City using New York Energy Bench-
marking. This research tests and compares the predictive performance
of the linear regression with OLS, RDF, and SVM algorithms to predict
annual building EUI for remaining residential and commercial buildings
in New York City at building and zip code levels. This study reports
error based on MAE ranged from 0.4 to 1.48 for different algorithms
tested in their model. The results of this study suggest that SVM pro-
vides the lowest MAE for energy prediction within the sample and OLS
provides better performance relative to SVM and RDF when general-
izing to a city level energy prediction. In another previous study [98],
MLP-ANN was used in improving the energy consumption bench-
marking for 7700 schools in the UK and reported 20.6 to 22% error.

The peer simulation models were selected based on error rates re-
ported by previous studies. Reinhart and Davila [9] provide a review on
several urban building energy use modeling and they reported error
range of 4% to 69% based on total building EUI as simulation output
(4-18% at aggregate scale validation and 5-69% at building scale va-
lidation). In another study, Fonseca and Schlueter [44] report 6-66%
error for building energy use modeling in district context using simu-
lation methods hybrid with data-driven model using k-means algo-
rithm. Nutkiewicz et al. [14] propose a framework (DUE-S) in which
simulation is coupled with a Convolutional Neural Network (CNN)
model for predicting urban scale electricity-use and reported
8.28-49.6% error. The framework was tested for 22 campus buildings
in California. It should be noted that the error rates for the simulation-
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Source Model Accuracy Metrics
MAPE (%) RMSE MAD/MAE
[971 MLR (OLS) - - 0.41-1.48
RDF - - 0.40-1.32
SVM - - 0.40-1.26
[98] ANN (MLP) 20.6-22% - -
[96] k-NN 1.81-2.38% - -
Table 11

Reported simulation-based error range as accuracy metric for multiple previous
studies of urban building energy use.

Source Model Reported Error Range %
[91] Simulation 4-69%

[44] Simulation + k-means 6-66%

[14] Simulation + CNN 8.28-49.6%

based models are reported based on monthly, daily, and hourly tem-
poral granularity. Tables 10 and 11 present comparisons of the pre-
diction performance of multiple peer data-driven and simulation-based
urban building energy use modeling.

In sum, the result of the data-driven UEUM building energy model
was validated and compared against actual and peer data-driven and
simulation-based models. The results of the UEUM building energy
model, developed by this research, as summarized in Table 9, show an
acceptable error rate compared to the previous studies. The results
suggest k-NN as the best overall accurate and reliable model compared
with other algorithm tested in this research is able to predict building
energy consumption at urban scale. The results also indicate that ap-
plying disaggregated data, including the local features of urban context
along with using more advanced data-driven machine learning models
rather than the generalized linear methods can fill the prediction per-
formance gap significantly.

Fig. 8 illustrates a map of energy use prediction results for all
buildings in Chicago with individual building level resolution using k-
NN. Fig. 8a illustrates the energy benchmarking data for 2717 build-
ings, which are the only available energy data at building level, and
Fig. 8b depicts the predicted energy for the 820,606 buildings in the
city of Chicago. The median predicted building site EUI for all building
types was found to be 71.88kBtu/ft> (226.75kWh/m?), including
68.15 kBtu/ft? (214.98 kWh/m?) for residential and mixed-use build-
ings and 95.01 kBtu/ft? (299.73 kWh/m?) for commercial buildings.
The predicted site EUI for out-of-sample buildings was compared with
the data in the sample, i.e., the dataset merging Chicago Energy Usage
dataset and Energy Benchmarking (with 58,205 observations including
buildings of all sizes) and the Energy Benchmarking dataset. The
median building site EUI in the 58,205-building sample of all building
types is 61.14kBtu/ft> (192.87 kWh/m?), including 60.24 kBtu/ft>
(190.03kWh/m?) for residential and mixed-use buildings and
68.02 kBtu/ft? (214.57 kWh/m?) for commercial buildings. According
to the Chicago Energy Benchmarking dataset, which reports energy use
for buildings greater than 50,000 ft*> (4645m?), the median building
site EUI for all building types is 79.40 kBtu/ft? (250.47 kWh/m?), in-
cluding 75.95 kBtu/ft*> (239.59 kWh/m?) for residential and mixed-use
buildings and 83.65 kBtu/ft* (263.88 kWh/m?) for commercial build-
ings.

The UEUM predictive model as a tool has two specific applications.
The first application is to quantify energy use of buildings at an urban
scale with a building level resolution to assist designers, planners, and
policymakers in energy driven planning, design and optimization. The
model provides essential building EUI data for buildings in the city in
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(@)

Fig. 8. A building scale energy use prediction and visualization for (a) 2700 buildings and (b) 820,606 buildings.

which their energy information is not available with an acceptable error
rate. In the context that many cities across the world have planned to
reduce their GHG emissions, the first step is to have a city-wide un-
derstanding of energy use patterns with a high level of resolution to
address climate change targets and achieve more sustainable cities. For
example, Chicago has targeted to reduce energy consumption by 80%
by 2050 [42]. Buildings are the main target of reduction in Chicago
because they account for 70% of emissions while the transportation
sector accounts for 21% [42]. The Energy Benchmarking dataset is
currently the only available disclosure dataset but covers only ~1% of
buildings in Chicago. Without energy information, a gap remains be-
tween aggregated targets and energy reduction strategies. With a lack
of building energy information, a data-driven urban scale energy use
modeling can provide this energy information. The major contribution
of this proposed predictive model is to provide a city-wide building
energy consumption model. This model can help in providing how
energy is used in city and inform on existing urban building energy
profiles and can help in early-stage energy driven planning and design
and the application and evaluation of energy efficiency policies.

As the second application, through aggregating across multiple
scales, the model performs as a decision-making tool that can help in
identifying patterns of energy demand and providing suitable strategies
at multi-levels of individual building level, block, neighborhood, and
the city scales. The model has the potential to aid energy-driven urban
planning and design and help in evaluating a multi-scale energy per-
formance analysis. For example, the multi-scale analysis can be used for
informing retrofit targets at the individual building level. It also can
capture inter-building effects on energy consumption at block level
such as how changes in building height likely impacts energy use. At a
larger scale of neighborhood and city, it can inform decision-making
regarding how changes in urban spatial patterns such as urban density,
zoning, land use, and other planning policies can affect building op-
erational energy use. Fig. 9 illustrates an example visualization that
helps communicate multi-scale analysis of urban energy use.

3.2. Integrated urban building and transportation energy use model

This section presents the results of the integrated UEUM model,
which captures both building and transportation energy use as a unified
system. The integrated model includes building data only for residential
and mixed-use buildings and transportation energy use per household,
including 46,843 observations. Non-residential buildings are excluded
because transportation data are for households so the integrated model
can be used to predict urban energy use on a per household basis.

Transportation EUI was modeled for different modes of travel in-
cluding light vehicle, bus, subway, and rail commuter across various
neighborhoods. The urban transportation EUI is estimated through in-
corporating factors such as mile traveled, fuel economy of different
modes, and energy intensity factors per mode of travel. First, trans-
portation EUI per household was estimated and then aggregated at the
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census tract level, and neighborhood level. In our analysis, the average
values for Chicago neighborhoods were found to be 8209 miles per
year, which is 19.6% lower than the national average. As the national
average values of annual vehicle miles traveled is reported
10,200 mile/year [99]. We estimated the average value of transporta-
tion energy use in Chicago to be 43,269 kBtu (12680.89 kWh) per
vehicle, which is 9.7% lower than the national average as reported as
47,960 kBtu (14055.68 kWh) per vehicle [99]. The lower estimation
may be due to the exclusion of the suburbs in Chicago neighborhoods.

ANN showed the highest performance for predicting building and
transportation EUI in the integrated model. Contrary to the single
output model in the previous section, k-NN did not show the same
performance for integrated model, particularly for transportation EUL
ANN is believed to be one of the most appropriate machine learning
methods for capturing complex and non-linear relationships which has
increasingly become popular in the field of urban energy studies
[59,100-102]. According to the literature, there is still a lack of reliable
approach in structuring the topology of the networks and training
highly efficient artificial neural network model [103], and this area of
research is still under investigation [104]. Thus, finding an efficient
model of the artificial neural network is usually based on the rule of
thumb approach. For example, with adding or dropping a neuron unit
in a hidden layer of a network, the performance of the model can be
significantly altered. In this research, an automation code was devel-
oped to capture the most efficient network topology from testing var-
ious number of hidden neuron, decaying weight, maximum number of
iterations and different learning rates based on (1) minimum errors; and
(2) minimum variation between train and test sets. This automation
code was scripted in nested for-loop approach using R programming
language software [69]. The network was trained using Broyden-
Fletcher-Goldfarb-Shanno (BFGS) optimization algorithm [105] to in-
crease the convergence speed and select the parameters calculated via
sum of squared error (SSE) and activated via tanh function. The “nnet”
[106] function in R was used to simulate the model. Through applying
this approach, all error measurements (MAE, MSE, RMSE, and MAPE),
and R-squared for both train and test sets simultaneously the execution
time in finding the efficient model was significantly decreased.

Fig. 10 shows the architecture of the best ANN model obtained in
this study. The optimum model comprises of 22 input units plus a bias
unit, a single hidden layer with 20 hidden neurons plus a bias unit, and
two output variables including building EUI and transportation EUIL
The black and orange weights on the ANN diagram indicate the mag-
nitude of distributed positive and negative weights, respectively.

Table 12 shows the results of the integrated ANN model, a MAPE of
4.1 for building and MAPE of 0.1 for transportation indicating the
predictive power for integrated urban energy use modeling. The results
show an R? value of 0.41 and 0.96 for building and transportation
energy use variables, respectively, indicating that the model explains
41% and 96% of the variance in building EUI and transportation EUI
per household. The results suggest considering the urban socio-spatial
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Multi-Scale Building Energy Use Analysis, Mapping and Visualization
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Fig. 9. A multi-scale building energy use analysis and visualization: building level, census block level, neighborhood level, and urban level.

patterns is essential in order to address the energy reduction goals. It
should be noted that many other influential factors (e.g., occupant
behavior factors) would be needed to incorporate to provide a more
comprehensive explanation for variations of energy use in cities as re-
lying on limited factors fails to capture all the variance.

As mentioned in the methodology section, ANN results are difficult
to interpret, which makes the ANN to be considered as black box model.
There are, however, robust methodologies for illuminating this black-
box model [93]. In fact, there are explanatory methods that can be
added to neural networks that allow for interpreting the complex re-
lationships captured [91,93,94,107]. In this research, the Garson al-
gorithm [92,94] was applied for explaining the relative contribution of
each variable on urban building and transportation energy use using the
ANN model. The Garson method presents the relative importance of
each predictor by identifying all weighted connections between the
nodes through partitioning hidden-output connection weights into
input neuron and computing the absolute values of connection weights.
The "NeuralNetTools" package [108] in R software was used for quan-
tifying Garson's connection weights.

Fig. 11 shows the results from Garson algorithm, including the re-
lative contributions of each variable on building (Fig. 11a) and trans-
portation (Fig. 11b) energy use as scaled between 0 and 1. Building size
(GFA), building height, and year built were found to be the most im-
portant variables influencing building EUI, suggesting that these vari-
ables are robust urban building energy predictors. After these three
building characteristics, socioeconomic indicators, including income,
unemployment, crowded housing, and total number of occupants, were
found to have the most contribution to building EUI Regarding trans-
portation EUI, the essential variables impacting transportation EUIL
were found to be neighborhood features including transit-oriented, bi-
keability, and VMT, followed by socioeconomic factors, including
household education level, poverty level, household dependency level,
and income, respectively. Neighborhood walkability and distance to
CBD were found to be the next most significant contributors to trans-
portation energy use, followed by unemployment factor. Urban spatial
patterns such as building height, as an urban intensity metric, and
sprawl index are the next most important contributors to explain urban
transportation energy use.
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These results suggest that all the factors in the model impact both
building and transportation but with different magnitudes. Also, these
results demonstrate how socioeconomic factors play a crucial role in
urban energy use models for both building and transportation EUL
Urban spatial pattern determinants such as distance to CBD and sprawl
index were found to be predictors of both transportation EUI and
building EUL However, these factors have relatively lower impact
compared with other predictors such as building characteristics,
building height and size, and built year for building EUI prediction, and
mobility indices such as transit-oriented and bikeability indices of
neighborhoods for transportation EUI prediction, and occupancy and
socioeconomic variables for predicting both building EUI and trans-
portation EUL

The impact of urban spatial patterns such as urban density on
building and transportation energy use has gained significant attention
in the literature, and there is a consensus that denser urban neighbor-
hoods are associated with lower energy use per capita [27,30]. For
example, Newman and Kenworthy [39] suggests that there is a strong
negative relationship between urban population density and transpor-
tation energy use. However, it is crucial to examine the density variable
with considering the importance of other factors such as mobility fac-
tors including transit-oriented, walkability, and bikeability as well as
land use mix factors that affect transport energy use. By employing a
multi-dimensional transport energy use analysis and including urban
attributes such as transit-oriented, bikeability, walkability, and sprawl
index in addition to building characteristics, such as building height,
and socioeconomic factors, this research demonstrates the importance
of the other variables for prediction of transportation energy use. The
urban spatial patterns such as building height, sprawl dimensions, and
distance to CBD affect transportation energy use due to their effects on
travel mode and distances. Our results demonstrate that other factors
such as mobility factors, including transit-oriented and bikeability
features of neighborhoods, can have a significant impact on urban en-
ergy use. However, it should be noted that urban transportation energy
analysis is associated with a high level of complexity and uncertainty,
mostly due to the complex nature of urban systems and the factors
involved. The results of this study are also case-specific to Chicago.

While previous studies acknowledge the importance of considering
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Fig. 10. Architecture of the urban transportation energy model using ANN algorithm. BEUI = Building Energy Use Intensity and TEUI = Transportation EUL

Table 12
Performance evaluation of the integrated building and transpiration energy use
model for Chicago.

Energy model MSE RMSE MAE MAPE (%) R?
Building 0.052 0.229 0.166 4.10 0.41
Transportation 0.002 0.04 0.014 0.1 0.96

both building and transportation energy end-uses simultaneously due to
their interrelationships as well as urban spatial patterns and building
characteristics that affect both, few previous studies examined the im-
pact of key urban attributes on both, simultaneously. Moreover, the
extant literature tends to primarily focus on urban spatial character-
istics [5,27,102]. Integrating transportation and building variables in
one framework presents an opportunity to quantify the inter-
dependency of the two components and the impact of the various socio-
spatial patterns in both constituents of urban energy model. The results
here suggest that all variables in the model are relevant in predicting
both sectors, but their effect magnitudes vary. For example, building-
related variables such as building height are among the influential
factors for building energy prediction which also impact transportation
energy with an indirect relationship. Building height also influences
some urban spatial attributes such as vertical density which impact
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travel distances and modes. As another example, urban spatial factors
such as distance to CBD or sprawl index influence both building and
transportation energy use through their impacts on building thermal
needs and mobility factors. Separate modeling and study of building
and transportation lead to neglecting the trade-offs between the
building energy and transportation energy use.

Finally, including urban spatial patterns along with socioeconomic
and occupancy indicators can help more in-depth modeling of the in-
tegrated urban energy use. For future study, we aim to provide a
quantitative analysis of the complex interplay between the socio-spatial
patterns on two main components of urban energy use (building and
transportation at the same time) by using Lek’s profile and partial de-
pendence (PaD) methods extended on ANN.

4. Limitations and future study

There are a number of limitations involved with this study. First, the
accuracy of data-driven models depends upon availability of data as
well as sufficient representative variables in the model. There are lim-
itations regarding quality and quantity of the data used in this research.
For example, only a limited number of datasets provide energy in-
formation at the building level in Chicago as well as other major cities.
Chicago’s Energy Benchmarking dataset, which has been released as a
part of disclosure laws similarly adopted by several U.S. cities, does not



N. Abbasabadi, et al.

Gross Floor Area (GFA) -
Building Height (HGT) -
Year-built (YRB) -

Applied Energy 253 (2019) 113550

Per capita Income (PCI) -
Unenployement% (P16U
Multifamily > 7-unit (MFG7]
Crowded Housing% (PHC) -

)-
)=
Total Occupant (TOC) - r:r?}l)%t:;laence
Transit-oriented Score (TOS) - (B-EU|)
8 Walkability Score (WKS) - 1.0
% Education% (P25D) - 08
% Dependency% (P1864) -
> Total Units (TUT) - 0.6
Average Household Size (AHS) - 0.4
Poverty% (PHBP) -
Vehicle Mile Travel (VMT) - 0
Single Family (SF) -
Bikeability Score (BIS) -
Distance to CBD (CBD) -
Multifamily < 7-unit (MFL7) -
Occupied Units% (OUP) -
Sprawl Index (SPI) -
0.00 0.25 0.50 0.75 1.00
Relative Importance
(a)
Transitoriented Score (05 - |
Bikeability Score (815) - |
vehicte Mile Travel (vwir) - |
Educations (P25D)- [ ——
Povertyes (PHEP) - (—
Dependency’s (P1864) - —
Per capita Income (PCH - [ -
Crowded Housing% (PHC r::;l)?)tll';,aence
Walkability Score (WKS (T-EUI)
% Distance to CBD (CBD, 1.00
% Unenployement% (P16U 075
'g Building Height (HGT,
> 0.50
Multifamily > 7-unit (MFG7, 0.25

Spraw! Index (SPI

Year-built (YRB

Average Household Size (AHS
Gross Floor Area (GFA

Single Family (SF;

Multifamily < 7-unit (MFL7
Total Occupant (TOC

)=
)=
)
)
)
)=
)=
)=
)=
Total Units (TUT) -
)7
)7
)
)
)=
)=
)=
)=
Occupied Units% (OUP) -

o
p=et

0 0.25

o-
o

'
0.50 0.75 1.

Relative Importance

(b)

Fig. 11. Importance plot of variables in the integrated model; (a) building EUI and (b) transportation EUIL

provide energy information for all buildings. In addition, it includes
only annual energy use data rather than more granular data [79], which
leads to a lack of temporal data required for detailed energy analyses.
While this study tried to address this issue by merging this dataset with
the more comprehensive Chicago Energy Usage dataset, greater avail-
ability of datasets with higher quality data and larger number of ob-
servations can produce more reliable results. Other data used in this
research to capture building characteristics and urban spatial patterns
have limitations as well and often include substantial missing in-
formation. In addition, even though data-driven urban energy models
can provide a realistic representation of energy consumption compared
with simulation-based methods, they have limitations in terms of re-
presentation, modification and evaluation of building systems such as
HVAC systems. Another limitation of this research is that, unlike
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building EUI data that are observed values, transportation EUI values
were achieved through estimation, which leads to uncertainties in the
transportation energy model.

Future work could improve the models used in this research by
developing a hybrid urban energy modeling framework that integrates
both engineering-based and data-driven energy prediction approaches
and combines the strengthens of each model. For example, data-driven
models can be coupled with simulation models to provide local data
such as microclimate data or occupancy and human-related data, which
are often oversimplified by current urban scale energy simulation
models. Simulation models enable incorporating building construction
systems, HVAC systems, and technology-related variables that data-
driven models do not often capture. Also, simulation methods allow for
increasing granularity of the model to a daily, hourly, and real-time
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prediction.

The framework developed in this research does not account for
embodied energy of buildings and road infrastructure. Future research
therefore should also incorporate embodied energy of urban elements
to present a more comprehensive definition and modeling of urban
scale energy use. We acknowledge that the results of this study are case
specific for Chicago and do not represent other cities. However, the
UEUM framework has the potential to be applied to other cities. Also, in
this article, we only report on relative importance of various urban
socio-spatial factors in buildings and transportation energy use varia-
tions. We aim to provide more information on how these factors impact
energy use in a future study.

5. Conclusion

This research developed a multi-scale data-driven urban energy use
modeling framework that integrates building and transportation energy
use at neighborhood and urban contexts. Our results show that applying
advanced machine learning (ML) techniques, using disaggregated in-
dividual building level energy data, and considering the influential
urban socio-spatial factors can improve the accuracy of an urban energy
prediction model. This research tested several well-established ML al-
gorithms, including Multiple Linear Regression (MLR), Nonlinear
Regression (NLR), Classification and Regression Trees (C&RT), Random
Decision Forest (RDF), k-Nearest Neighbors (k-NN), and Artificial
Neural Networks (ANNs). Among these algorithms, k-NN and ANN
trained by BFGS optimization algorithm provided the best overall
performance in terms of accuracy. While k-NN algorithm was more
accurate in urban building energy use modeling than in integrated
building and transportation modeling, ANN algorithm had the best
performance for integrated modeling compared to the other algorithms.
This research also examined the relative role of key urban attributes on
urban energy performance. Building characteristics such as building
size and height, followed by occupancy and socioeconomic variables
such as household income, education, and employment variables, have
the greatest impact on building EUI. The most influential factors on
transportation EUI were found to be mobility and travel patterns, in-
cluding neighborhood transit-oriented score, daily Vehicle Miles Travel
(VMT), and neighborhood bikeability and walkability indices, followed
by socioeconomic factors and distance to Central Business District
(CBD), which represents the location of neighborhood across the city.
The results also indicate that while sprawl index, representing density,
accessibility, and land use is one of the predictors of building and
transportation EUI, its effects represent lower relative importance
compared to the effects of other variables in the model, such as the
effect of neighborhood’s transit-oriented factor on transportation EUI or
the effects of occupancy and socioeconomic factors on both building
and transportation EUI. The outcomes of this study provide opportu-
nities to model and analyze urban energy use dynamics across neigh-
borhoods in a city with acceptable error rates. This is a fundamental
step in identifying and addressing potential energy use challenges and
improvement strategies in urban context. This work also provides in-
sight into the trade-offs between different influential urban factors and
urban energy use. However, it is important to note that more compre-
hensive understanding and modeling of cities as complex systems re-
main an open question and additional investigation and considering
other influential factors are required. Overall, the results of this re-
search can assist architects, engineers, urban designers and planners
and policy-makers to understand interrelationships between urban
socio-spatial patterns and urban energy consumption through a more
comprehensive perspective that supports sustainable energy policies for
existing and future cities. The proposed integrated urban energy fra-
mework can be used for interpreting the effects of each variable within
an entire urban system and track subsequent variations in both building
and transportation energy use, simultaneously.
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