CAE 463/524 Building Enclosure Design Spring 2015

Lecture 3: February 3, 2015
Introduce surface energy balances
Solar orientation and radiation modeling
Begin complex conduction

Built
Environment
Research
@ IIT

Advancing energy, environmental, and
sustainability research within the built environment
Civil, Architectural and Environmental Engineering
www.built-envi.com
Twitter: @built envi
Dr. Brent Stephens, Ph.D. Illinois Institute of Technology brent@iit.edu

Campus projects: Expectations uploaded to BB

- Need to do thermal assessments by early March
- 20 students in this class: 5 teams of 4

Course	Name	Major	Level	Campus building
CAE463-01	Behrens, Maria C.	ARCE	U4	Alumni
CAE463-01	Geoghegan, Thomas	ARC2	GR	SSV
CAE463-01	Irazabal, Carlos H.	ARCE	U4	Crown
CAE463-01	Jung, Yun Joon	ARCE	U4	Crown
CAE463-01	Lis, Kimberly A.	ARCE	U5	SSV
CAE463-01	Ng, Yin Ling	ARCE	U5	Alumni
CAE463-01	Theisen, Whitney A.	ARCE/EMGT	U5	Alumni
CAE463-01	Zanzinger, Zachary D.	ARCE	U5	
CAE524-01	Carrillo Garcia, Jose	ARCE	GR	Crown
CAE524-01	Dorn, Lawrence E.	CM	GR	SSV
CAE524-01	Erukulla, Dilip Kumar	ARCE	GR	
CAE524-01	Liang, Jinzhe	CE	GD	E1 - Rettaliata Eng. Center
CAE524-01	Mullin, Elizabeth M.	ARCE/ARCE	U5	Alumni
CAE524-01	Tuz, Oleg	CM	GR	Crown
CAE524-02	Chandler, Julie A.	ARCE	GR	E1 - Rettaliata Eng. Center
CAE524-02	Chung, Allan	CM	GR	
CAE524-02	Fortune, Roger G.	ARCE	GR	E1 - Rettaliata Eng. Center
CAE524-02	Gadani, Dhaval S.	ARCH/CM	U5	
CAE524-02	Jarosz, Michelle M.	STE	GR	SSV
CAE524-02	Linn, Rebecca C.	ARCE	GR	E1 - Rettaliata Eng. Center

Last time (Jan 20 ${ }^{\text {th }}$)

- Review of building science
- Psychrometrics
- Individual modes of heat transfer
- 4 example problems of individual modes of heat transfer

Today's objectives

- Bring all the heat transfer modes together to introduce surface energy balances
- Solar orientation and enclosures
- Begin more complex conduction in building enclosures
- Assign HW \#1

Building enclosures and heat transfer, visualized

Heat transfer in building science: Summary

Conduction

$$
\begin{gathered}
q=\frac{k}{L}\left(T_{\text {sur } f, 1}-T_{\text {surf }, 2}\right) \\
\frac{k}{L}=U=\frac{1}{R} \\
R_{\text {total }}=\frac{1}{U_{\text {total }}}
\end{gathered}
$$

$$
R_{\text {total }}=R_{1}+R_{2}+R_{3}+\ldots
$$

For thermal bridges and combined elements:
$U_{\text {total }}=\frac{A_{1}}{A_{\text {total }}} U_{1}+\frac{A_{2}}{A_{\text {total }}} U_{2}+\ldots$

Convection

$$
\begin{aligned}
& \text { Radiation } \\
& \text { Long-wave }
\end{aligned}
$$

$$
\begin{gathered}
q_{\text {conv }}=h_{\text {conv }}\left(T_{\text {fluid }}-T_{\text {surf }}\right) \\
R_{\text {conv }}=\frac{1}{h_{\text {conv }}}
\end{gathered}
$$

$$
q_{1 \rightarrow 2}=\frac{\sigma\left(T_{\text {surf }, 1}^{4}-T_{\text {surf }, 2}^{4}\right)}{\frac{1-\varepsilon_{1}}{\varepsilon_{1}}+\frac{A_{1}}{A_{2}} \frac{1-\varepsilon_{2}}{\varepsilon_{2}}+\frac{1}{F_{12}}}
$$

$$
q_{\text {rad }, \rightarrow \rightarrow 2}=h_{\text {rad }}\left(T_{\text {suf }, 1}-T_{\text {sur }, 2}\right)
$$

$$
h_{r a d}=\frac{4 \sigma T_{\text {agg }}^{3}}{\frac{1}{\varepsilon_{1}}+\frac{1}{\varepsilon_{2}}-1} \quad R_{r a d}=\frac{1}{h_{r a d}}
$$

$$
\text { Or more simply: } q_{1 \rightarrow 2}=\varepsilon_{\text {suff }} \sigma F_{12}\left(T_{\text {suf }, 1}^{4}-T_{\text {suf }, 2}^{4}\right)
$$

Solar radiation: $q_{\text {solar }}=\alpha I_{\text {solar }}$ (opaque surface)
Transmitted solar radiation: $q_{\text {solar }}=\tau I_{\text {solar }}$ (transparent surface)

Combined heat transfer

- Heat transfer to/from a surface is dominated by one or more modes of heat transfer
- In cavities (window spaces, wall cavities, crawl spaces), convection and radiation may be of similar magnitudes
- So, heat transfer is fairly complicated
- We need to be able to describe all heat transfer mechanisms acting on each surface of an enclosure to understand how the enclosure affects heat, air, and moisture performance

Surface energy balance: Bringing all the modes together

- Exterior surface example: Roof

Once you have this equation described, you can do just about anything regarding heat transfer in building enclosure analysis, leading into full-scale energy

Steady-state energy balance at this exterior surface:
What enters must also leave (no storage)

$$
q_{\text {solar }}+q_{\text {longwaveradiation }}+q_{\text {convection }}-q_{\text {conduction }}=0
$$

Surface energy balance: Bringing all the modes together

- Exterior surface example: Roof

$$
\sum q=0
$$

We can use this equation to estimate indoor and outdoor surface temperatures At steady state, net energy balance is zero - Because of T^{4} term, often requires

Solar gain
Surface-sky radiation
Convection on external wall
Conduction through wall

$$
\alpha I_{\text {solar }}
$$

$$
q_{s w, \text { solar }}
$$

$$
+\varepsilon_{\text {surface }} \sigma F_{\text {sky }}\left(T_{\text {sky }}^{4}-T_{\text {surface }}^{4}\right) \quad+q_{l w, \text { surface-sky }}
$$

$$
+h_{\text {conv }}\left(T_{\text {air }}-T_{\text {suface }}\right)
$$

$$
+q_{\text {convection }}
$$

$$
-U\left(T_{\text {sufface }}-T_{\text {sufface,interior }}\right)=0
$$

$$
-q_{\text {conduction }}=0
$$

A note on sign conventions

- Move from left to right (or top to bottom)
- Assume that the temperature to the left (or upstream) is higher than the temperature to the right (or downstream)
- The signs will work themselves out and let you know if that is not the case
- Just be consistent!

A note on sky temperatures

A note on sky temperatures

- There are many ways to get "apparent sky temperatures"
- Varying levels of detail and accuracy
- For a partly cloudy night sky: $T_{\text {sky }}=T_{\text {air }}\left[0.8+\frac{\left(T_{\text {devpoint }}-273\right)}{250}\right]^{1 / 4}, ~($ For 50% cloud cover
- For daytime: $T_{s k y}=\left(\varepsilon_{s k y} T_{\text {air }}^{4}\right)^{0.25}$
$\varepsilon_{\text {sky }}=\left[0.787+0.764 \ln \left(\frac{T_{\text {devpoint }}}{273}\right)\right]\left(1+0.0224 N-0.0035 N^{2}+0.00028 N^{3}\right)$
- For a clear sky: $N=0$

Where $N=$ cloud cover (tenths)

- For 50% cloud cover, $N=0.5$

Simpler sky temperatures

- Other models estimate apparent sky temperatures ignoring differences in water vapor:

$$
T_{\text {sky }}=0.0552 T_{\mathrm{at}}^{1.5}
$$

Where $T_{s k y}$ is in K and $T_{a t}$ is ambient air temperature $[K]$

Typical view factors, \boldsymbol{F}_{1-2}

- Some typical view factors from surfaces to ground or sky

View ("shape") factors for:
Vertical surfaces:

- To sky $\left(F_{\text {surface-sky }}\right) \quad 0.5$
- To ground ($\mathrm{F}_{\text {surface-ground }}$) 0.5

Horizontal surfaces:

- To sky ($\mathrm{F}_{\text {surface-sky }}$) 1
- To ground ($\mathrm{F}_{\text {surface-ground }}$) 0

3) Tilted surfaces

- To sky $(1+\cos \Sigma) / 2$
- To ground ($1-\cos \Sigma$)/2

Typically assume:

$$
T_{\text {ground }}=T_{\text {air }}
$$

*Note that other surrounding buildings complicate view factors, but their net temperature differences probably aren't that different so long-wave radiation can be negligible

Example: Roof surface temperature

- Estimate the surface temperature that might be reached by a bituminous roof (absorptivity of 0.9) installed over a highly insulating substrate ($\mathrm{R}-20 \mathrm{IP}$) exposed to intense sun ($\mathrm{q}_{\text {solar }}=$ $1000 \mathrm{~W} / \mathrm{m}^{2}$) on a calm, cloudless day with an ambient temperature of $20^{\circ} \mathrm{C}, \mathrm{RH}=30 \%$, and wind speed of $2 \mathrm{~m} / \mathrm{s}$
- Indoor surface temperature is $22^{\circ} \mathrm{C}$
- What happens if surface absorptivity is reduced to 0.3 ?
- What happens if wind speed increases to $6 \mathrm{~m} / \mathrm{s}$?
- What happens if insulation value decreases to $\mathrm{R}-3$?

Example: Solution

Example: Solution (low absorptivity)

	Surface energy balance		$\begin{gathered} \boldsymbol{A d d} \boldsymbol{A} \\ \mathrm{W} / \mathrm{m}^{2} \end{gathered}$	Subtract W/m ${ }^{2}$	
	Solar (short-wave)		300		
	Surface-sky long-wave radiation		-141		
	Convection on roof		-155		
	Conduction through roof			3	
		SUM	0		
Given	alpha	0.3	bituminous	s membrane	
Given	Itotal, W/m2	1000			
Assume	Fsurface-sky	1			
Assume	e,surface	0.9			
Given	Tair,out, K	293.15		20 degC	
Assume	Tair,out,dewpoint, K	275.06		1.91 deg C	psych chart
Calculate	e,sky	0.79	$\mathrm{N}=0$		
Calculate	Tsky, K	276.61	Tsky equatio	tion for clear day	
Guess	Tsurface, K	304.75		31.6 degC	
Given	Tsurf, in, K	295.15		22.0 degC	
Constant	stef-boltz, W/(m2K4)	5.6704E-08			
Calculate	hconv, Wm2K	13.4			
Given	R-value IP, h-ft2-F/Btu	20			
Given	R-value, SI	3.52			
Given	U-value, W/m2K	0.28			

Surface energy balance: Bringing all the modes together

- Similarly, for a vertical surface:

$$
\begin{aligned}
& \alpha I_{\text {solar }} \\
& +\varepsilon_{\text {surface }} \sigma F_{\text {sky }}\left(T_{\text {sky }}^{4}-T_{\text {surface }}^{4}\right) \\
& +\varepsilon_{\text {surface }} \sigma F_{\text {ground }}\left(T_{\text {ground }}^{4}-T_{\text {surface }}^{4}\right) \\
& +h_{\text {conv }}\left(T_{\text {air }}-T_{\text {surface }}\right) \\
& -U\left(T_{\text {surface }}-T_{\text {surface,interior }}\right)=0
\end{aligned}
$$

Bringing all modes (and nodes) together

- For an example room like this, you would setup a system of equations where the temperature at each node (either a surface or within a material) is unknown
- 12 material nodes + 1 indoor air node

Heat Xfer @ external surfaces:
Radiation and convection
At surface nodes:

$$
\sum q=0
$$

At nodes inside materials:

$$
m c_{p} \frac{d T}{d t}=\sum q_{\text {at boundaries }}
$$

Bringing all modes (and nodes) together

- To get the impact on indoor air temperature (and close the system of equations)
- Write an energy balance on the indoor air node
- Air impacted directly only by convection (bulk and surface)
$\left(V_{\text {room }} \rho_{\text {air }} c_{p, a i r}\right) \frac{d T_{\text {air,in }}}{d t}=\sum_{i=1}^{n} h_{i} A_{i}\left(T_{i, \text { surf }}-T_{\text {air,in }}\right)+\dot{m} c_{p}\left(T_{\text {out }}-T_{\text {air }, \text { in }}\right)+Q_{H V A C}$
In plain English:
The change in indoor air temperature is equal to the sum of convection from each interior surface plus outdoor air delivery (by infiltration or dedicated outdoor air supply), plus the bulk convective heat transfer delivered by the HVAC system

Bringing all the modes together

- Similarly, for a vertical surface:

$$
q_{\text {solar }}+q_{l w r}+q_{\text {conv }}-q_{\text {cond }}=0
$$

SOLAR ORIENTATION

Solar radiation

- The sun is the source of most energy on the earth
- We need to have a working knowledge of earth's relationship to the sun
- We should be able to estimate solar radiation intensity
- To understand thermal effects of solar radiation and how to control or utilize them,
- We need to estimate solar gains on a building, and
- We need to predict intensity of solar radiation and the direction at which it strikes building surfaces
- It starts with relationships between the sun and the earth

Solar radiation: earth-sun relationship

- Earth rotates about its axis every 24 hours
- Earth revolves around sun every 365.2425 days
- Earth is titled at an angle of 23.45°

Solar radiation: earth-sun relationship

- Therefore, different locations on earth receive different levels of solar radiation during different times of the year (and different times of the day)
- The greatest amount of solar radiation is delivered to northern hemisphere on June 21
- Least amount of solar energy delivered on December 21
- There are methods of determining the amount of flux of solar radiation to surfaces on the earth

Earth-sun relationships

- The position of a point P on the earth's surface with respect to the sun's rays can be calculated if we know:
- Latitude of point on earth, l (degrees)
- Hour angle of the point on earth, h (degrees)
- Sun's declination, d (degrees)

Earth-sun relationships

- Sun's declination, d, can be estimated by:

$$
d=23.45 \sin \left(360 \frac{284+n}{365}\right)
$$

Where n is the day of the year, which you can determine by counting on your hands, looking up online, or using this table:

TABLE 13.1 Variation in n throughout the Year for Eq. (13.1)

| Month | n for the Day of
 the Month, D | | Month |
| :--- | :---: | :--- | :---: | | n for the Day of |
| :---: |
| the Month, D |

Where D is the day of the month

d is positive when sun's rays are north of the equator

Figure 13.5 Variation of sun's declination.

Earth-sun relationships

- Now we have latitude (l) and sun's declination (d)
- Need hour angle (h)

It's all about time:

- Greenwich Civil Time = time at line of zero longitude
- Local Civil Time (CT) is governed by your longitude

- $1 / 15^{\text {th }}$ of an hour (4 mins) of time for each degree difference in longitude
- Central Standard Time is 90 degrees from 0
- 4 min per degree * 90 degrees $=360$ minutes $=6$ hours
- Time is also measured by apparent diurnal motion of the sun
- Apparent Solar Time (AST), Local Solar Time (LST), or Solar Time (ST)
- Interchangeable
- Slightly different than a civil day because of irregularities of the earth's rotation and shape of earth's orbit
- The difference between solar time (LST) and civil time (CT) is called the Equation of Time (E)

Calculating solar time (LST)

- Local solar time (LST):

$$
\mathrm{LST}=\mathrm{CT}+\left(\frac{1}{15}\right)\left(L_{\mathrm{std}}-L_{\mathrm{loc}}\right)+E-D T
$$

Where:
LST = local solar time (hour)
CT = clock time (hour)
$L_{s t d}=$ standard meridian longitude for local time zone (degrees west)
$L_{l o c}=$ longitude of actual location (degrees west)
$E=$ Equation of Time (hour)
$D T=$ Daylight savings time correction (hour)
${ }^{*} D T=1$ if on DST; otherwise 0
**Note that all times should be converted to decimal format from 0 to 24. For example, 3:45 $\mathrm{PM}=15.75$ hours

- Equation of Time: $E=0.165 \sin 2 B-0.126 \cos B-0.025 \sin B$

$$
\text { where } B=\frac{360(n-81)}{364} \text { and } n \text { is the day of the year. } B \text { is in degrees }
$$

Calculating solar time (LST)

- Finally, the solar hour angle, h, can be calculated:

$$
h=15(\mathrm{LST}-12) \text { degrees }
$$

LST is in 24 hour format
h is positive after solar noon and negative before

- Again, you can either calculate these values, use a website*, or look them up in a table like this:

TABLE 13.2 The Sun's Declination and Equation of Time, Calculated

Month	Day							
	7		14		21		28	
	Declination, Degrees	Eq. of Time, Hours						
January	-22.4	-0.10	-21.4	-0.15	-20.1			
February	-15.8	-0.24	-13.6	-0.24	-11.2	-0.24	-8.7	-0.22
March	-6.0	-0.20	-3.2	-0.17	-0.4	-0.13	2.4 13.9	-0.09
April	6.4	-0.04	9.0 18.5	-0.01	11.6	0.02 0.06	13.9 21.4	0.04 0.05
May	16.7	0.06	18.5	0.06	20.1 23.45	0.06 -0.03	21.4 23.3	0.05 -0.05
June	22.7	0.02	23.3	0.00	23.45	-0.03	23.3	-0.05
July	22.6	-0.08	21.7	-0.09	20.4	-0.10	18.9 9.2	-0.10 -0.01
August	16.3	-0.09	14.1	-0.07	11.8	-0.04	9.2 -3.0	-0.01 0.17
September	5.4	0.05	2.6	0.09	-0.2	0.13	-3.0 -14.1	0.17 0.27
October	-6.6	0.22	-9.2	0.25	-11.8	0.27	-14.1	0.27 0.18
November	-17.1 -22.8	0.27 0.12	-18.9 -23.3	0.25 0.07	$\begin{aligned} & -20.4 \\ & -23.45 \end{aligned}$	0.22 0.02	$\begin{aligned} & -21.7 \\ & -23.3 \end{aligned}$	0.18 -0.04
December	-22.8	0.12	-23.3	0.07	-23.45	0.02	-23.3	-0.04

*NOAA has website for this: http://www.esrl.noaa.gov/gmd/grad/solcalc/

Calculating solar time (LST) and hour angle (h)

- Example problem:
- Determine the local solar time and sun's hour angle in Minneapolis, MN ($44.9^{\circ} \mathrm{N}, 93.3^{\circ} \mathrm{W}$) at 2:25 PM Central Daylight Savings Time on July 21

Earth-sun relationships

- Once we have our local latitude l, the sun's declination angle d, and the hour angle h, we can move on to other important relationships:

Three important angles $\left({ }^{\circ}\right)$

Figure 13.6 Definition of sun's zenith, altitude, and azimuth anglet
$\theta_{H}=$ sun's zenith angle angle between the sun's rays and the local vertical
$\beta=$ altitude angle angle in a vertical plane between the sun's rays and the projection of the earth's horizontal plane
$\phi=$ solar azimuth angle angle in the horizontal plane measured from south to the horizontal projection of the sun's rays

Earth-sun relationships

- Relationships between l, h, d, and θ_{H}, β, and ϕ can all be described in this figure:

Figure 13.7 Relation of a point on the earth's surface to sun's rays.
Don't worry if this doesn't all make sense; there are formulas!

Determining solar angles

- After a lot of complex geometry/trigonometry...

$$
\begin{gathered}
\cos \theta_{H}=\cos l \cos h \cos d+\sin l \sin d \\
\sin \beta=\cos l \cos h \cos d+\sin l \sin d \\
\cos \phi=(\cos d \sin l \cos h-\sin d \cos l) / \cos \beta
\end{gathered}
$$

A note on sign conventions for all of these relationships: North latitudes (l) are positive, south latitudes are negative Declination (d) is positive when sun's rays are north of equator Hour angle (h) is negative before solar noon, positive after Azimuth angle (ϕ) is negative east of south and positive west of south

$$
\begin{aligned}
& \text { Note that } \beta \text { for solar noon }=90 \text { degrees }-|l-d| \\
& \text { Also note that } \beta+\theta_{H}=90 \text { degrees }
\end{aligned}
$$

Earth-sun relationships

- Last but not least...
- The previous relationships identify a point on the earth's surface in relation to the sun
- All valid for horizontal surfaces
- Buildings are not horizontal surfaces!
- Need to describe surface-sun relationships:

Figure 13.9 Definitions of surface azimuth, surface tilt, and surfacesolar azimuth angles and the relation of sun's rays to a tilted surface.

Surface-sun relationships

More important angles (${ }^{\circ}$) $\theta=$ incidence angle angle between the solar rays and the surface normal
$\Sigma=$ surface tilt angle angle between surface normal and the vertical

Vertical surface: $\Sigma=90^{\circ}$ Horizontal surface: $\Sigma=0^{\circ}$
$\Psi=$ surface azimuth angle angle between south and the horizontal projection of the surface normal
$\gamma=$ surface-solar azimuth angle angle between horizontal projection of solar rays and the horizontal projection of the surface normal

$$
\gamma=|\phi-\Psi|
$$

Figure 13.9 Definitions of surface azimuth, surface tilt, and surfacesolar azimuth angles and the relation of sun's rays to a tilted surface.
*Sign convention: ψ is negative for a surface that faces east of south and positive for a surface that faces west of south

Tilted surface:

$\cos \theta=\cos \beta \cos \gamma \sin \Sigma+\sin \beta \cos \Sigma$
Vertical surface ($\Sigma=90^{\circ}$):
$\cos \theta=\cos \beta \cos \gamma$

Surface-sun relationships: Example problem

- Calculate sun's altitude (β) and azimuth (ϕ) angles at 7:30 am local solar time (LST) on August 7 for a location at 40 degrees north latitude

Figure 13.6 Definition of sun's zenith, altitude, and azimuth angles

Surface-sun relationships: Example problem

- Calculate sun's incidence angle for a vertical surface that faces 25 degrees east of south and has a tilt angle of 60 degrees at 3:00 pm local solar time on June 7 for a location at 36 degrees north latitude

Translation:

Find θ
Given:
$\Psi, \Sigma, l, h, \beta, \phi$

Figure 13.9 Definitions of surface azimuth, surface tilt, and surfacesolar azimuth angles and the relation of sun's rays to a tilted surface.

What is this all about? ... Solar flux

- Once we know earth-surface-sun relationships, we can eventually get to the effects of those relationships on actual solar radiation
- Solar radiation intensity is roughly constant at the outer layer of the atmosphere
- $1367 \mathrm{~W} / \mathrm{m}^{2}$ - varying a few percent depending on time of year
- The earth's atmosphere depletes some direct solar radiation
- Intercepted by other air molecules, water molecules, dust particles
- Remaining reaches earth's surface unchanged in wavelength
- Direct radiation
- The deflected radiation turns aside from the direct beam
- Diffuse radiation

Estimating solar flux

- Estimating intensity of direct normal solar radiation:
- There are many, many ways to estimate this
- ASHRAE uses a model for "average clear days" that works well for most of our purposes

$$
I_{D N}=A e^{-B / \sin \beta}
$$

Where:
$I_{D N}=$ direct normal irradiance, or amount of solar radiation per unit area on a surface that is always held perpendicular to the sun's rays ($\mathrm{W} / \mathrm{m}^{2}$)
$A=$ apparent direct normal solar flux at outer edge of earth's atmosphere ($\mathrm{W} / \mathrm{m}^{2}$)
$B=$ empirically determined atmospheric extinction coefficient (dimensionless)
$\beta=$ altitude angle

- Estimating intensity of diffuse horizontal radiation: $I_{d H}=C I_{D N}$ Where:
$I_{d H}=$ diffuse horizontal irradiance, or that which is scattered (W/m²)
$C=$ empirically determined coefficient for typical "clear days" (dimensionless)

Typical clear day values for solar radiation

TABLE 13.3 Coefficients for Average Clear Day Solar Radiation Calculations for the Twenty-First Day of Each Month, Base Year 1964

	A		B	C		
	$\frac{\mathrm{Btu}}{\mathrm{hr} \cdot \mathrm{ft}^{2}}$	$\frac{w}{m^{2}}$	Dimensionless Ratios		Declination, deg	Equation of Time, hr
January	390	1230	0.142	0.058	-20.0	-0.19
February	385	1215	0.144	0.060	-10.8	-0.23
March	376	1186	0.156	0.071	0.0	-0.13
April	360	1136	0.180	0.097	11.6	0.02
May	350	1104	0.196	0.121	20.0	0.06
June	345	1088	0.205	0.134	23.45	-0.02
July	344	1085	0.207	0.136	20.6	-0.10
August	351	1107	0.201	0.122	12.3	-0.04
September	365	1151	0.177	0.092	0	0.13
October	378	1192	0.160	0.073	-10.5	0.26
November	387	1221	0.149	0.063	-19.8	0.23
December	391	1233	0.142	0.057	-23.45	0.03

Source: Adapted by permission from ASHRAE Handbook, Fundamentals Edition, 1993.

$$
I_{D N}=A e^{-B / \sin \beta}
$$

Solar flux to building surfaces (finally!)

- Solar radiation striking a surface: $I_{\text {solar }}=I_{D}+I_{d}+I_{R}$
- Direct + diffuse + reflected
- Direct $\left(I_{D}\right): \quad I_{D}=I_{D N} \cos \theta$

Where:
$\theta=$ incidence angle, or the angle between the solar rays and the surface normal
$I_{D N}=$ direct normal irradiance $\left(\mathrm{W} / \mathrm{m}^{2}\right)$

- Diffuse $\left(I_{d}\right): \quad I_{d}=I_{d H} \frac{1+\cos \Sigma}{2}$

Where:
$\Sigma=$ surface tilt angle, or the angle between surface normal and surface vertical $I_{d H}=$ diffuse horizontal solar radiation (W/m²)

Solar flux to building surfaces (finally!)

- Reflected $\left(I_{R}\right)$
- Radiation striking a surface after reflecting off surrounding surfaces
- Similar to diffuse
- Usually concerned with reflection from the ground

$$
I_{R}=\frac{\rho_{g} I_{H}(1-\cos \Sigma)}{2}
$$

Where:
$\rho_{g}=$ solar reflectance of the ground (depends on surface, usually 0.1-0.4)
$I_{H}=$ total solar flux striking the horizontal ground (W/m²)

$$
I_{H}=I_{D N} \cos \theta_{H}+I_{d H}
$$

Solar flux to building surfaces

- Reflected $\left(I_{R}\right)$
- Values of reflectance $\left(\rho_{g}\right)$ for common ground surfaces

Figure 13.21 Solar reflectance for various ground surfaces. [Reprinted by permission from ASHRAE Trans., 69 (1963), 31.]

Solar flux to building surfaces: Example problem

- Find the solar flux incident on the tilted surface used in the previous problem
- Assume a ground reflectance of 0.15

Refined solar data

- Now, you could make all of these calculations by hand for every hour of the day...
OR
- You can build calculators or download data
- For hourly sun positions, you can build a calculator or use one from the internet
- http://www.susdesign.com/sunposition/index.php
- For hourly solar data (direct + diffuse in $\mathrm{W} / \mathrm{m}^{2}$)
- http://rredc.nrel.gov/solar/old_data/nsrdb/
- You may be familiar with "typical meteorological years"
- These data inform those databases
- For visualizing geometry, using something like IES-VE
- Show videos (videos can be downloaded on course website)

Solar orientation videos/software

- http://built-envi.com/wp-content/uploads/2013/07/ solar position ies.zip
- 56 mb zip file of several videos
- January, April, July, November $1^{\text {st }}$
- Just one day (24 hours)
- 6 am, 9 am, 12 pm, and 4pm for an entire year

Solar orientation videos/software

Bringing all the modes together

- Back to our energy balance for a vertical surface:

$$
q_{s o l a r}+q_{l w r}+q_{c o n v}-q_{c o n d}=0
$$

$$
\alpha I_{\text {solar }}
$$

$$
+\varepsilon_{\text {surface }} \sigma F_{\text {sky }}\left(T_{\text {sky }}^{4}-T_{\text {surf }}^{4}\right)
$$

$$
+\varepsilon_{\text {surface }} \sigma F_{\text {air }}\left(T_{\text {air }}^{4}-T_{\text {surface }}^{4}\right)
$$

$$
+\varepsilon_{\text {surface }} \sigma F_{\text {ground }}\left(T_{\text {air }}^{4}-T_{\text {ground }}^{4}\right)
$$

$$
+h_{\text {conv }}\left(T_{\text {air }}-T_{\text {surface }}\right)
$$

$$
-U\left(T_{\text {surface }}-T_{\text {surface,interior }}\right)=0
$$

We need to understand conduction through enclosures that are more complex than just single materials

COMPLEX CONDUCTION IN ENCLOSURES

Combining elements
Multiple layers and temperature distributions
Thermal bridges

Combining elements in an actual enclosure

- So far we have been exploring single assemblies
- Just roofs or just walls without windows and doors
- If you design a building without windows and doors, something probably went wrong!
- Concept of combined thermal transmittance: U_{o}
- U_{o} is the combined thermal transmittance of the respective areas of a gross exterior wall, roof, or floor
- It is basically an area-weighted average U-value

$$
U_{o}=\left(U_{\text {wall }} A_{\text {wall }}+U_{\text {window }} A_{\text {window }}+U_{\text {door }} A_{\text {door }}\right) / A_{o}
$$

where
$U_{o}=$ average thermal transmittance of gross wall area
$A_{0}=$ gross area of exterior walls
$U_{\text {wall }}=$ thermal transmittance of all elements of opaque wall area
$A_{\text {wall }}=$ opaque wall area
$U_{\text {window }}=$ thermal transmittance of window area (including frame)
$A_{\text {window }}=$ window area (including frame)
$U_{\text {door }}=$ thermal transmittance of door area
$A_{\text {door }}=$ door area (including frame)

Combined thermal transmittance example

- Calculate U_{o} for a $10 \mathrm{~m} \times 2.4 \mathrm{~m}$ wall with two double-glazed windows with wood/vinyl frames and one solid core door
- One window is $1.5 \times 0.86 \mathrm{~m}$; the other window is $0.9 \times 0.76 \mathrm{~m}$
- Let's say we looked up window U-value in a table
- $\mathrm{U}_{\text {window }}=2.90 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$
- The door is $0.86 \times 2 \mathrm{~m}$
- Let's say we also looked up its U-value in a table
- $\mathrm{U}_{\text {door }}=1.42 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$
- The wall has a U value of $U_{\text {wall }}=0.404 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$

$$
\begin{aligned}
A_{\text {window }} & =(1.500 \times 0.860)+(0.900 \times 0.760)=1.97 \mathrm{~m}^{2} \\
A_{\text {door }} & =(0.860 \times 2.000)=1.72 \mathrm{~m}^{2} \\
A_{\text {wall }} & =(10 \times 2.4)-(1.97+1.72)=20.31 \mathrm{~m}^{2}
\end{aligned}
$$

Therefore, the combined thermal transmittance for the wall is

$$
\begin{aligned}
U_{o} & =\frac{(0.404 \times 20.31)+(2.90 \times 1.97)+(1.42 \times 1.72)}{10 \times 2.4} \\
& =0.68 \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)
\end{aligned}
$$

Conduction through multiple layers

- Just as in electrical circuits, the overall thermal resistance of a series of elements (layers) can be expressed as the sum of the resistances of each layer
- Don't forget the interior and exterior convective resistances
- By continuity of energy we can write

$$
q=\frac{T_{1}-T_{2}}{R_{1}}=\frac{T_{2}-T_{3}}{R_{2}}=\frac{T_{3}-T_{4}}{R_{3}}
$$

Simple conduction through multiple layers

- Calculate the R -value of an enclosure assembly

Steps:

1. List each material in the assembly

- And its conductivity and thickness

2. Calculate conductance of each layer

- $\quad U=k / L$

3. Calculate thermal resistance of each layer

- $\quad R=1 / U$

4. Sum the individual thermal resistances to get $R_{\text {total }}$

Conduction through multiple layers

Example problem:

- Calculate the total thermal resistance, $\mathrm{R}_{\text {total }}$, and the temperature distribution through the wall shown below

Conduction through multiple layers

- Refer to 2013 ASHRAE Handbook Ch. 26 for data

	Conductivity	Thickness	Conductance	Resistance
Layer material	$k=[\mathrm{W} / \mathrm{mK}]$	$L=[\mathrm{m}]$	$U=\left[\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}\right]$	$R=\left[\mathrm{m}^{2} \mathrm{~K} / \mathrm{W}\right]$

A note on R-values of air cavities

- ASHRAE has measured the combined convective + radiative R-values for thin planar cavities of various orientations and depths with various " $\varepsilon_{e f f}$ "
- These are the best data to use for air spaces in assemblies
- If you do not know that the material in the cavity is reflective or "low e", just assume that both walls of the cavity have $\varepsilon=0.9$ for each surface, so that when combined, $\varepsilon_{\text {eff }}=0.82$

$$
\varepsilon_{e f f}=\varepsilon_{1} \varepsilon_{2}
$$

2013 ASHRAE Handbook, Chapter 26 (small cavities)

R-values for different air gap characteristics

Table 3 Thermal Resistances of Plane Air Spaces ${ }^{\text {a,b,c }},\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right) / \mathrm{W}$

Position of Air Space	Direction of Heat Flow	Air Space		13 mm Air Space ${ }^{\text {c }}$					20 mm Air Space ${ }^{\text {c }}$				
			Temp.	Effective Emittance $\varepsilon_{\text {eff }}{ }^{\text {d, },}$					Effective Emittance $\varepsilon_{\text {eff }}{ }^{\text {d, } e}$				
		Temp. ${ }^{\text {d }}{ }^{\circ}{ }^{\circ} \mathrm{C}$	Diff. ${ }^{\text {d, }}{ }^{\circ} \mathrm{C}$	0.03	0.05	0.2	0.5	0.82	0.03	0.05	0.2	0.5	0.82
Horiz.	Up	32.2	5.6	0.37	0.36	0.27	0.17	0.13	0.41	0.39	0.28	0.18	0.13
		10.0	16.7	0.29	0.28	0.23	0.17	0.13	0.30	0.29	0.24	0.17	0.14
		10.0	5.6	0.37	0.36	0.28	0.20	0.15	0.40	0.39	0.30	0.20	0.15
		-17.8	11.1	0.30	0.30	0.26	0.20	0.16	0.32	0.32	0.27	0.20	0.16
		-17.8	5.6	0.37	0.36	0.30	0.22	0.18	0.39	0.38	0.31	0.23	0.18
		-45.6	11.1	0.30	0.29	0.26	0.22	0.18	0.31	0.31	0.27	0.22	0.19
		-45.6	5.6	0.36	0.35	0.31	0.25	0.20	0.38	0.37	0.32	0.26	0.21
$\begin{aligned} & 45^{\circ} \\ & \text { Slope } \end{aligned}$	Up	32.2	5.6	0.43	0.41	0.29	0.19	0.13	0.52	0.49	0.33	0.20	0.14
		10.0	16.7	0.36	0.35	0.27	0.19	0.15	0.35	0.34	0.27	0.19	0.14
		10.0	5.6	0.45	0.43	0.32	0.21	0.16	0.51	0.48	0.35	0.23	0.17
		-17.8	11.1		0.38	0.31	0.23	0.18	0.37	0.36	0.30	0.23	
		-17.8	5.6	0.46	0.45	0.36	0.25	0.19	0.48	0.46	0.37	0.26	0.20
		-45.6	11.1	0.37	0.36	0.31	0.25	0.21	0.36	0.35	0.31	0.25	0.20
		-45.6	5.6	0.46	0.45	0.38	0.29	0.23	0.45	0.43	0.37	0.29	0.23
Vertical	Horiz.	32.2	5.6	0.43	0.41	0.29	0.19	0.14	0.62	0.57	0.37	0.21	0.15
		10.0	16.7	0.45	0.43	0.32	0.22	0.16	0.51	0.49	0.35	0.23	0.17
		10.0	5.6	0.47	0.45	0.33	0.22	0.16	0.65	0.61	0.41	0.25	0.18
		-17.8	11.1	0.50	0.48	0.38	0.26	0.20	0.55	0.53	0.41	0.28	0.21
		-17.8	5.6	0.52	0.50	0.39	0.27	0.20	0.66	0.63	0.46	0.30	0.22
		-45.6	11.1	0.51	0.50	0.41	0.31	0.24	0.51	0.50	0.42	0.31	0.24
		-45.6	5.6	0.56	0.55	0.45	0.33	0.26	0.65	0.63	0.51	0.36	0.27
		32.2	5.6	0.44	0.41	0.29	0.19	0.14	0.62	0.58	0.37	0.21	0.15

Usually we use values from the $\varepsilon_{e f f}=0.82$ column unless one material is low-e

2013 ASHRAE Handbook, Chapter 26 (small cavities)

R-values for different air gap characteristics

Position of Air Space	Direction of Heat Flow	Mean	Temp.	Effective Emittance $\varepsilon_{\text {eff }}^{\text {d,e }}$					Effective Emittance $\varepsilon_{\text {eff }}^{\text {d,e }}$				
		Temp. ${ }^{\text {d }}{ }^{\circ} \mathrm{C}$	Diff. ${ }^{\text {d }}{ }^{\circ} \mathrm{C}$	0.03	0.05	0.2	0.5	0.82	0.03	0.05	0.2	0.5	0.82
		Air Space		40 mm Air Space ${ }^{\text {c }}$					90 mm Air Space ${ }^{\text {c }}$				
Horiz.	Up	32.2	5.6	0.45	0.42	0.30	0.19	0.14	0.50	0.47	0.32	0.20	0.14
		10.0	16.7	0.33	0.32	0.26	0.18	0.14	0.27	0.35	0.28	0.19	0.15
		10.0	5.6	0.44	0.42	0.32	0.21	0.16	0.49	0.47	0.34	0.23	0.16
		-17.8	11.1	0.35	0.34	0.29	0.22	0.17	0.40	0.38	0.32	0.23	0.18
		-17.8	5.6	0.43	0.41	0.33	0.24	0.19	0.48	0.46	0.36	0.26	0.20
		-45.6	11.1	0.34	0.34	0.30	0.24	0.20	0.39	0.38	0.33	0.26	0.21
		-45.6	5.6	0.42	0.41	0.35	0.27	0.22	0.47	0.45	0.38	0.29	0.23
		32.2	5.6	0.51	0.48	0.33	0.20	0.14	0.56	0.52	0.35	0.21	0.14
	Up	10.0	16.7	0.38	0.36	0.28	0.20	0.15	0.40	0.38	0.29	0.20	0.15
$\begin{aligned} & 45^{\circ} \\ & \text { Slope } \end{aligned}$		10.0	5.6	0.51	0.48	0.35	0.23	0.17	0.55	0.52	0.37	0.24	0.17
		-17.8	11.1	0.40	0.39	0.32	0.24	0.18	0.43	0.41	0.33	0.24	0.19
		-17.8	5.6	0.49	0.47	0.37	0.26	0.20	0.52	0.51	0.39	0.27	0.20
		-45.6	11.1	0.39	0.38	0.33	0.26	0.21	0.41	0.40	0.35	0.27	0.22
Vertical	Horiz. \longrightarrow	-45.6	5.6	0.48	0.46	0.39	0.30	0.24	0.51	0.49	0.41	0.31	0.24
		32.2	5.6	0.70	0.64	0.40	0.22	0.15	0.65	0.60	0.38	0.22	0.15
		10.0	16.7	0.45	0.43	0.32	0.22	0.16	0.47	0.45	0.33	0.22	0.16
		10.0	5.6	0.67	0.62	0.42	0.26	0.18	0.64	0.60	0.41	0.25	0.18
		-17.8	11.1	0.49	0.47	0.37	0.26	0.20	0.51	0.49	0.38	0.27	0.20
		-17.8	5.6	0.62	0.59	0.44	0.29	0.22	0.61	0.59	0.44	0.29	0.22
		-45.6	11.1	0.46	0.45	0.38	0.29	0.23	0.50	0.48	0.40	0.30	0.24
		-45.6	5.6	0.58	0.56	0.46	0.34	0.26	0.60	0.58	0.47	0.34	0.26
		32.2	5.6	0.89	0.80	0.45	0.24	0.16	0.85	0.76	0.44	0.24	0.16

Usually we use values from the $\varepsilon_{e f f}=0.82$ column

Conduction through multiple layers

- Refer to 2013 ASHRAE Handbook Ch. 26 for data

	Conductivity	Thickness	Conductance	Resistance
Layer material	$k=[\mathrm{W} / \mathrm{mK}]$	$L=[\mathrm{m}]$	$U=\left[\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}\right]$	$R=\left[\mathrm{m}^{2} \mathrm{~K} / \mathrm{W}\right]$
Interior film	n / a	n / a	8.3	0.121
Concrete	1.8	0.15	12	0.083
Type 4 XPS	0.029	0.075	0.4	2.564
Air space	n / a	0.025	n / a	0.17

$$
\mathrm{R}_{\text {total }}(\mathrm{IP})=17.3 \mathrm{hr} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F} / \mathrm{Btu}
$$

R-values of deeper cavities

- The R-value of cavities stops increasing much at 3 inches (75 mm) depth
- Beyond 3 inches (75 mm), convection and radiation dominate
- For a deep cavity, either compute R-values with more advanced methods or use the 3 inch (75 mm) value
- Do NOT take the R value of a 1 inch (25 mm) cavity and multiply by the thickness of the cavity for thick cavities
- If you did that, you would guess that an 8 foot attic would have an R value of about $100 \mathrm{hr} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F} / \mathrm{Btu}$, which is a factor of 20 too high!

Conduction through multiple layers

- $\mathrm{U}_{\text {total }}=0.33 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$
- Calculate steady-state heat flow through the enclosure

- $q=U \Delta T$
- $q=\left(0.33 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}\right)^{*}\left(\mathrm{~T}_{\text {inside }}-\mathrm{T}_{\text {outside }}\right)$
- $q=\left(0.33 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}\right)^{*}(30 \mathrm{~K})=10 \mathrm{~W} / \mathrm{m}^{2}$
- From inside to outside

Conduction through multiple layers

- Calculating the temperature gradient through an enclosure of i materials

$$
\Delta T_{i}=\frac{T_{\text {internal }}-T_{\text {external }}}{\sum_{i=0}^{n} R_{i}}
$$

	Conductivity $\mathbf{W} / \mathbf{m K}$	Thickness \mathbf{m} Layer Interior film	Conductance $\mathbf{W} / \mathbf{m}^{2} \mathbf{K}$	Resistance $\mathbf{m}^{2} \mathbf{K} / \mathbf{W}$
Concrete	1.8	0.15	8.3	0.121

Conduction through multiple layers

- Calculating the temperature gradient through an enclosure

Total heat transfer through multiple layers

- We can continue to use the electrical resistance analogy

Limitations to the summation rule

The summation rule for finding $R_{\text {total }}$ has several limitations:

- Only works for layers
- Layers must be same area
- Layers must be uniform thickness
- Layers must have constant material properties
- This is the biggest limitation

What do we do with more realistic constructions?

- Parallel path or ISO thermal equivalents
- Computer modeling

Figure 1. Vertical ridges on a steel stud reduce the contact area between the stud and the sheathing material and improve the whole wall R-value.

