
ENVE 576 
Indoor Air Pollution 
Fall 2014 
 
Week 9: October 21, 2014 
Particle sources, deposition, resuspension, infiltration 

Dr. Brent Stephens, Ph.D. 
Department of Civil, Architectural and Environmental Engineering 

Illinois Institute of Technology 
brent@iit.edu 

 
Built Environment Research Group 

www.built-envi.com 
Advancing energy, environmental, and 
sustainability research within the built environment 



WHERE ARE WE NOW? 
7 lectures in… 
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Quick course refresher to remind us 

•  So far we’ve covered: 
–  Human time activity patterns 
–  Human respiratory system 
–  Inhalation and intake fractions 
–  Reactor models 
–  Air exchange rates 
–  Overview of most all indoor pollutants 
–  Gas phase pollutants (VOCs, inorganic gases) 

•  Sources and emissions 
•  Adsorption/desorption 
•  Reactions and byproducts 

–  Particulate matter pollutants 
•  Single particle motion 
•  Particle size distributions 
•  Respiratory deposition 

–  Indoor microbiology 3 



Final project topics and teams 

Team Topic 
1: Ivan Jose and YiYun Fan Emissions from enclosures 
2: Kyleen Hoover LEED and IEQ 
3: Muhammad Akbar and Harshil Modi Pollen and control 
4: Jihad Zeid E-cigarettes 
5: Torkan Fazli and Sina Nabavi Particle filtration 
6: Tongchuan Wei and Sibo Liu Radon 
7: Boyang Lu and Shujun Zhang Plants and IAQ 
8: Haoran Zhao and Zhice Hu Cookstoves and IAQ 
9: Andi Mele, Dan Zhao, and Sheng Xiang Swimming pools and IAQ 

4 



Review from my last lecture 
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Today’s topics 

•  Particle sources 
–  Indoor emissions 
–  Resuspension 
–  Outdoor transport (infiltration and penetration) 

•  Particle losses 
–  Deposition 
–  Filtration and air cleaners (next week) 
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PARTICLE SOURCES 
Indoors and outdoors 
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Particle sources 

•  Indoor and outdoor particle sources vary by particle size 

•  Indoor emission sources are typically episodic 
–  Tend to be brief, intermittent, and highly variable 
–  Steady state rarely applies 
–  Outdoor particle levels and ventilation rates often vary with time 

8 
Nazaroff, 2004 Indoor Air 



Indoor particle sources 

•  Combustion processes 
–  Incense smoke, candle burning, cigarette smoke 

•  Cooking 
–  Gas and electric cooking both 
–  Biomass cookstoves in developing world 

•  Cleaning activities 
–  Resuspension from vacuum cleaners 
–  Aerosolization from tap water in humidifiers 
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Indoor particle sources 

•  Ultrafine (<100 nm) and accumulation mode (0.1-1 µm) 
particles were monitored in an occupied house for 3 years 
–  Data at 5 minute intervals 

•  The largest emission sources were described in this paper 
–  Cooking with a gas stove 
–  Toasting with electric toasters and toaster ovens 
–  Burning candles and incense 
–  Using a gas-powered clothes dryer 

10 
Wallace, 2006 Aerosol Sci Technol 



Indoor particle sources 

•  Biggest contributor to indoor UFPs was indoor sources 
•  Biggest contributor to 0.1-1 µm particles was outdoors 
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Wallace, 2006 Aerosol Sci Technol 



Indoor particle sources 
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Wallace, 2006 Aerosol Sci Technol 



Indoor particle sources: Outdoor infiltration 

13 
Wallace, 2006 Aerosol Sci Technol 



Indoor particle sources: Tea, toast, breakfast 
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Wallace, 2006 Aerosol Sci Technol 



Indoor particle sources: heavy cooking 
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Wallace, 2006 Aerosol Sci Technol 



Indoor particle sources: Oven cooking 
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Wallace, 2006 Aerosol Sci Technol 



Indoor particle sources: Incense and candles 
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Wallace, 2006 Aerosol Sci Technol 



Indoor particle sources: Daily profiles 
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Wallace, 2006 Aerosol Sci Technol 



Typical indoor UFP emission rates 
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UFP emitting device Size range Emission rate (#/min) Reference 
Flat iron with steam 20-1000 nm 6.0×109 Afshari et al. (2005) 
Electric frying pan 10-400 nm 1.1-2.7×1010 Buonnano et al. (2009) 
3D printer w/ PLA 10-100 nm ~2.0×1010 Stephens et al. (2013) 
Vacuum cleaner 20-1000 nm 3.5×1010 Afshari et al. (2005) 
Scented candles 20-1000 nm 8.8×1010 Afshari et al. (2005) 
Gas stove 20-1000 nm 1.3×1011 Afshari et al. (2005) 
3D printer w/ ABS 10-100 nm ~1.9×1011 Stephens et al. (2013) 
Cigarette 20-1000 nm 3.8×1011 Afshari et al. (2005) 
Electric stove 20-1000 nm 6.8×1011 Afshari et al. (2005) 
Frying meat 20-1000 nm 8.3×1011 Afshari et al. (2005) 
Radiator 20-1000 nm 8.9×1011 Afshari et al. (2005) 
Laser printers 6-3000 nm 4.3×109 to 3.3×1012 He et al. (2010) 
Cooking on a gas stove 10-400 nm 1.1-3.4×1012 Buonnano et al. (2009) 

1 billion 
UFPs/min 

1 trillion 
UFPs/min 

10 billion 
UFPs/min 

100 billion 
UFPs/min 



I/O particle ratios: combination of I and O sources 
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Chen and Zhao, 2011 Atmos Environ 



RESUSPENSION AND DEPOSITION 
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Indoor source: Resuspension 

•  Early experiments noticed that indoor particle concentrations 
were elevated above background during human activities 

•  This is termed the “personal cloud” effect 
–  Basically we disturb dust reservoirs on furniture and textiles 

•  e.g., dusting, folding clothes, making a bed 
–  We call this “resuspension” 

•  The level of vigor of the activity is an important factor in resuspension 
–  Resuspension is generally greater for larger particles 
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Indoor source: Resuspension 

23 
Ferro al., 2004 J Expo Anal Environ Epidem 



Indoor sources: Resuspension 
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Qian and Ferro, 2008 Aerosol Sci Technol 



Indoor sources: Resuspension 
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Ferro al., 2004 J Expo Anal Environ Epidem 

PEM
SIM

=
Personal
Stationary



Quantifying resuspension 

•  We can define a resuspension rate: 

•  And incorporate it into mass balance on indoor air: 

•  And tie that into mass balance on surface of interest (A) 
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R = resuspension flux (mg/m2-hr) 
L = surface concentration (mg/m2) 

dCi
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Indoor sources: Resuspension 
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Qian and Ferro, 2008 Aerosol Sci Technol 



Indoor sources: Resuspension 
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Qian and Ferro, 2008 Aerosol Sci Technol 



Indoor losses: Deposition 

•  We discussed deposition last lecture 
–  Primarily in terms of settling velocity 
–  Also mentioned diffusion, impaction, thermophoresis, and electrostatic forces 

•  I showed one of the first good modeling efforts for size-dependent 
deposition rate loss coefficients in a room: 

–  kdep in units of 1/hr 
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kdep =
vdA
V

Lai and Nazaroff 2000 J Aerosol Sci 



Indoor losses: Deposition 

•  There have been several studies that measured particle deposition in 
real environments as well 
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Thatcher et al. 2002 Atmos Environ 

kdep =
vdA
V

Procedure for finding 
deposition rates is similar 
to finding AER or finding 
reactive deposition rates 
•  Inject particles and 

measure the 
subsequent decay 



Indoor losses: Deposition 

•  Deposition in a chamber under different air speeds and furnishing conditions 

31 
Thatcher et al. 2002 Atmos Environ 



Indoor losses: Deposition 

•  Review of deposition in a chamber under different scenarios 
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Thatcher et al. 2002 Atmos Environ 



Indoor losses: Deposition 

•  Deposition in real homes 
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Wallace et al. 2004 Atmos Environ 



Indoor losses: Deposition 

•  Deposition in real homes 
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He et al. 2005 Atmos Environ 



Indoor losses: Deposition 

•  Deposition in real homes 

35 
He et al. 2005 Atmos Environ 



Indoor particles review 

•  What have we learned so far? 
•  We can describe particle concentrations by size (diameter) 
•  Particles of various sizes exist indoors 

–  The smallest and largest particles are typically indoor generated 
–  Medium sized (fine) particles often infiltrated from outdoors 

•  Once indoors, particles of different sizes deposit on surfaces at different rates 
–  And deposit in different regions of our lungs 
–  Particle density and shape can also affect this (refer to settling velocity) 

•  We’ve seen some ways particle deposition, emission, and resuspension are 
measured 
–  We still need to focus on a major source: 

•  Penetration from outdoors 
–  And we still need to focus on a major loss: 

•  HVAC filtration 
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PARTICLE ‘PENETRATION’ 
(I.E., ‘INFILTRATION’) 
Either a removal term or a source term, depending… 

37 



Particle penetration 
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Indoor/outdoor particle sources 

•  First reviews I/O 
measurements 

•  Then focuses on 
outdoor infiltrated 
particles only 
–  “Infiltration factor” 
–  “Penetration factor” 

39 
Chen and Zhao, 2011 Atmos Environ 



Outdoor particle sources: Infiltration factors 
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Chen and Zhao, 2011 Atmos Environ 

IF = Cin

Cout

=
Piλ

λ + kdep,i +λ filtη filt,i



Particle infiltration/penetration 

•  Particle penetration is both a source and loss/filtration 
mechanism 
–  Probability that a particle penetrates through a building envelope 
–  A large value for penetration factors means a larger number of particles 

infiltrate from outdoors through cracks and gaps in building envelopes 
•  Low “envelope removal efficiency” 

–  Large value for penetration factors means high “envelope removal 
efficiency” 

•  Reduced indoor proportions of outdoor particles 
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Penvelope =
Cinside

Coutside

=1−Eenvelope

Coutside

Cinside

Liu and Nazaroff 2001 Atmos Environ 



Objectives for lecture on P 

•  Discuss previous research on P 
–  Including research from my graduate work 

•  Discuss how to measure P 
–  And how to solve for P 

42 



Liu and Nazaroff (2001) Atmos Environ 

•  Particle penetration through cracks and in fiberglass 
insulation 
–  Also interested in reactive gases 

•  Modeling study 

The deal is: 
•  All buildings envelopes have leaks 
•  Leaks are assumed to one of three types of ‘cracks’ 
•  If we can understand particle deposition in cracks 

–  We should be able to understand particle penetration through leaks 

43 
Liu and Nazaroff 2001 Atmos Environ 



Flow through cracks 

•  Relationship between pressure (ΔP) and flow (Q) 
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C = 1.5 + nbends 
w = crack width 

Liu and Nazaroff 2001 Atmos Environ 



Flow through a crack 

Q = cdA
2ΔP
ρ

If Re >>1:  
Q∝ ΔP
Short, tall flow channel → inertial forces dominate
If Re <<1:
Q∝ΔP
Long, thin flow channel → viscous forces dominate

45 
Liu and Nazaroff 2001 Atmos Environ 



What are typical crack dimensions? 

•  This is a very tough parameter to get 
–  We have no metrics that tell us anything about crack size and 

distribution among envelopes 

•  A study from the 1950s suggested that crack heights were 
normally less than 2.5 mm around closed windows 
–  Another in the 1970s reported 0.5-7.5 mm crack heights common in 

buildings 

•  Not much other information here 
–  And cracks/leaks aren’t always obvious 

•  This remains a big limitation to this modeling study 

46 
Liu and Nazaroff 2001 Atmos Environ 



Assuming flow, crack width, and variety of ΔP… 
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We can come up with estimates for crack height and total crack width 

Liu and Nazaroff 2001 Atmos Environ 



Modeling particle penetration through cracks 

•  They considered there major deposition mechanisms: 
–  Brownian diffusion 
–  Gravitational settling 
–  Impaction (found not to be important in a separate analysis) 

•  Gravitational 

•  Diffusion 
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Pg =1−
Vsz
dU

Vs = particle settling velocity 
z = crack length 
d = crack height 
U = air speed through crack 

Pd = 0.915e
−1.8854Dz

d2U + 0.0592e
−22.34Dz

d2U + 0.026e
−1524Dz

d2U +...
D = particle diffusion coefficient 

Ptotal = Pg ×Pd ×Pi
Liu and Nazaroff 2001 Atmos Environ 



Model cracks 

49 
Liu and Nazaroff 2001 Atmos Environ 



Model results 
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Liu and Nazaroff 2001 Atmos Environ 



Model results 
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Liu and Nazaroff 2001 Atmos Environ 



Model results 
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Liu and Nazaroff 2001 Atmos Environ 

Predicted for real building cracks 



Comparison of model results to chamber tests 

•  Follow up study: Liu and Nazaroff (2003) 
–  Does the model work? 
–  Still using idealized cracks 

53 
Liu and Nazaroff 2003 Atmos Environ 



Comparison of model results to chamber tests 
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Liu and Nazaroff 2003 Atmos Environ 



55 
Liu and Nazaroff 2003 Atmos Environ 



56 
Liu and Nazaroff 2003 Atmos Environ 



DATA FROM REAL BUILDINGS 
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Real building data 

•  Models are helpful for understanding: 
–  Is a phenomenon important? 
–  What impacts the phenomenon? 

•  Models are severely limited in terms of: 
–  Applicability to real environments 

•  Measurements are absolutely required in real buildings 
–  But data can be messy and experiments challenging 
–  One issue is that you need fluctuations in the data to solve for two 

parameters with only one mass balance (loss rates and penetration 
factors) 

–  Another issue is that indoor sources greatly influence your data 
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Specific measurements of P 

•  Vette et al. 2001 Aerosol Sci Technol 
•  Chao et al. 2003 Atmos Environ 
•  Thatcher et al. 2003   
•  Rim et al. 2010 Environ Sci Technol 
•  Stephens and Siegel 2012 Indoor Air 
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Vette et al. 2001 Aerosol Sci Technol 
•  Single residence – Fresno CA 
•  Size-resolved indoor and outdoor particle measurements for 2 months 
•  Deposition rates were first determined by measuring indoor decay after 

elevation from outdoor particles 
–  Simultaneous AER measurements 
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Vette et al. 2001 
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P was then estimated during 
nighttime indoor-outdoor 

measurement periods where there 
were probably no indoor sources: 

Good estimates of size-resolved 
deposition rates 

Estimates of P ranged from 0.5 to 0.9 



Chao et al. 2003 Atmos Environ 

•  Six non-smoking high-rise apartments 
•  0.02-10 µm particles 
•  Deposition rate estimated from indoor decay data 

–  Simultaneous AER measurements 

•  Penetration factor determined using transient data and estimate of 
deposition rate 
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Chao et al. 2003 

63 
Estimates of P ranged from 0.5 to 0.8 



Thatcher et al. 2003 Aerosol Sci Technol 

•  Two houses in CA 
–  Size-resolved 0.3 to 10 µm particles 

•  New method of measuring P 
–  “Concentration rebound method” 
–  Involved artificially elevating indoor concentrations to measure decay 
–  Then operate a HEPA filter to remove most of the indoor particles 
–  Then observe the indoor concentration as it “rebounds” to normal 

levels due to the infiltration of outdoor particles only 
–  Estimate P from steady state I/O ratio 

•  Simultaneous AER measurements 



Particle rebound method from Thatcher et al. 2003 
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Cin

Cout

=
Pλ

λ + kdep



Thatcher et al. (2003) 
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Thatcher et al. (2003) 

67 
Estimates of P ranged from 0.3 to 1.0 
depending on particle size and home 



Summary of penetration factors 
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Chen and Zhao, 2011 Atmos Environ 

IF = Cin

Cout

=
Piλ

λ + kdep,i +λ filtη filt,i



Rim et al. 2010 Environ Sci Technol 

•  Another method of measuring penetration factor 
–  Focused on size-resolved UFPs 

•  Performed in an unoccupied test house 
–  Measurements conducted over entire weekend periods 
–  Some with windows closed; some with a window open 8 cm 
–  Simultaneous AER measurements 

•  Data: indoor-outdoor UFPs time-varying for 60 hours 
–  AER every 4 hours 

–  Discretized solution to mass balance for each particle size 
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Rim et al. 2010 Environ Sci Technol 

•  With 60 hours of data, the best-
fitting values of P and kdep that fit 
this equation were found using 
Excel Solver to minimize the sum 
of the absolute differences 
between the modeled and 
observed indoor number 
concentrations 

•  Measured versus predicted indoor 
air concentrations compared via 
linear regression 
–  If R2 was > 0.90, they were happy 

with their estimates of P and kdep 

70 



Rim et al. 2010 Environ Sci Technol 

•  Deposition rates 
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Rim et al. 2010 Environ Sci Technol 

72 
Rim et al., 2010 Environ Sci Technol 

Penetration factors 
IF = Cin

Cout

=
Piλ

λ + kdep,i +λ filtη filt,i



NEWER WORK 
By me (as a graduate student) 
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Penetration results from Thatcher et al. (2003) 
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Richmond: 
Leakier house 
ELA = 148 cm2 

Clovis:  
Tighter house 
ELA = 87 cm2 

*Estimated Leakage Area (ELA) = f (blower door air leakage coefficients & ΔP) 



Hypothesis: Particle penetration and building leakage are correlated 
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gases 

viruses 

Particle  
Diameter 

tobacco smoke 

diesel smoke fungal spores 

pollen 

dust 

1 nm  10 nm    100 nm         1 µm         10 µm 100 µm 

20 – 1000 nm 

•  Particles can penetrate through cracks in building envelopes 
–  Theoretically a function of: 

•  Crack height and length 
•  Air speed through leaks 

•  Are building details and particle penetration factors correlated? 
–  e.g., air leakage parameters or building age 
–  Can we learn a lot from a little? 
–  Need a better test method for measuring P quickly 

Liu and Nazaroff, 2001 Atmos Environ 



Refined PM penetration test method 
•  Setup particle monitors indoors and outdoors | TSI P-Traks 

–  Logging simultaneously at 1-minute intervals 
•  Perform blower door test (multi-point, de-press. and press.) 

–  Afterward: continue pressurizing space, open a door/window across the house 
–  Flushes indoor air of any previous indoor PM sources 
–  Elevates indoor PM & replaces w/ the same aerosol that exists outdoors 

•  Close doors and windows, turn on all ceiling, HVAC, and mixing fans 
•  Elevate indoor CO2 for air exchange testing | Small CO2 tank 
•  Leave the house 

–  Measure subsequent decay (+ CO2 decay | TSI Q-Trak) 
•  Continue measuring I/O PM and CO2 decay for ~2-3 hours 

–  Solve for k using 1st order decay using data from first ~10-30 minutes 
–  Solve for P using forward-marching discretization of mass balance  
–  Use estimate of k from previous step 

•  Total test time: ~3-4 hours 
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•   20 nm to 1 µm 



PM infiltration: Refined test method 
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b

Use first portion of  
data to solve for k: 

Use estimate of k and 
all of the data to  
solve for P: 

a

P

k 

k 

Parameter Estimation 

( )tk
tintin eCC +−
== λ
0,,

( )( ) tCkCPCC tintouttintin Δ+−+= −−− 1,1,1,, λλ

Stephens and Siegel, 2012 Indoor Air 
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PM infiltration: Test homes 
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Stephens and Siegel, 2012 Indoor Air 



Particle infiltration results 
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PM infiltration: What can we learn? 
•  Blower Doors 

–  Used to measure air-tightness in buildings worldwide 

80 
Source: Energy Conservatory Blower Door Manual 



Blower door tests 
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€ 

Q = CΔPn

Source: ASTM E 779 and ASHRAE Standard 119 

Airflow 
(m3 s-1) Leakage 

Coefficient 
(m3 s-1 Pa-n) 

I/O Pressure 
Difference 

(Pa) 

Leakage 
Exponent 

(dimensionless) 

Estimated Leakage Area (cm2) Normalized Leakage, NL (dimensionless) 

Air Changes per Hour @ 50 Pa (hr-1) 



•  Particle penetration factors (P for 20-1000 nm particles) 
–  Significantly correlated with coefficient from blower door tests (C) 
–  Spearman’s ρ = 0.71 (p < 0.001) 

•  Association is strong, but predictive ability is low 

PM infiltration and air leakage 
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Stephens and Siegel, accepted to Indoor Air, March 2012  



PM infiltration: Outdoor particle source and air leakage 
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Stephens and Siegel, accepted to Indoor Air, March 2012  

Leakier homes had much higher outdoor particle source rates 

•  Potential socioeconomic implications: low-income homes are leakier 
Chan et al., 2005 Atmos Environ 



PM infiltration and age of homes 
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Stephens and Siegel, accepted to Indoor Air, March 2012  

Older homes also had much higher outdoor particle source rates 



Implications for submicron PM exposure: 19 homes 

•  Combined effects: 
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Lower bound Upper bound 
Penetration factor, P 0.17 0.72 
Air exchange rate, AER (1/hr) 0.13 0.95 
Outdoor source term, P×AER (1/hr) 0.02 0.62 
Indoor loss rate, β + ηQ/V (1/hr) 3.24 0.31 
Fractional HAC operation, f 55.3% 10.7% 
I/O submicron ratio (Finf) 0.01 0.70 

Factor of ~60 to ~70 difference in indoor proportion of outdoor particles between: 
•   A new airtight home with a very good filter and high HAC operation, and 
•   A leaky old home with a poor filter and low HAC operation 

•   Some potential for predictive ability using: 
•   Age of home 
•   Building airtightness test results 

•   Knowledge of HAC filter type 
•   I/O climate conditions 

Finf =
Cin

Cout

=
P× AER

AER+β + f ηHACQHAC

V



Summary on particle penetration 

•  In the last 10 years, more measurements of penetration factors through 
envelopes have been measured 

•  To date specific penetration measurements have been made in around 
40 homes 
–  We’ve made about 20 of these measurements! 

•  Penetration factors seem to range from ~0.2 to ~1.0 depending on 
particle size and building envelope characteristics 
–  Variations have a big impact on human exposure 

•  We’re continuing to explore potential associations between particle 
penetration and building characteristics 
–  Ultimate goal is to perform a lot of these tests, then never have to perform 

them again 
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