ENVE 576 Indoor Air Pollution Fall 2014

Week 9: October 21, 2014

Particle sources, deposition, resuspension, infiltration

Dr. Brent Stephens, Ph.D. Department of Civil, Architectural and Environmental Engineering Illinois Institute of Technology <u>brent@iit.edu</u>

Built Environment Research Group

Environment Research @ III] 🐋 🚓 🍌 📢

Built

Advancing energy, environmental, and sustainability research within the built environment

WHERE ARE WE NOW?

7 lectures in...

Quick course refresher to remind us

- So far we've covered:
 - Human time activity patterns
 - Human respiratory system
 - Inhalation and intake fractions
 - Reactor models
 - Air exchange rates
 - Overview of most all indoor pollutants
 - Gas phase pollutants (VOCs, inorganic gases)
 - Sources and emissions
 - Adsorption/desorption
 - Reactions and byproducts
 - Particulate matter pollutants
 - Single particle motion
 - Particle size distributions
 - Respiratory deposition
 - Indoor microbiology

Final project topics and teams

Team	Торіс
1: Ivan Jose and YiYun Fan	Emissions from enclosures
2: Kyleen Hoover	LEED and IEQ
3: Muhammad Akbar and Harshil Modi	Pollen and control
4: Jihad Zeid	E-cigarettes
5: Torkan Fazli and Sina Nabavi	Particle filtration
6: Tongchuan Wei and Sibo Liu	Radon
7: Boyang Lu and Shujun Zhang	Plants and IAQ
8: Haoran Zhao and Zhice Hu	Cookstoves and IAQ
9: Andi Mele, Dan Zhao, and Sheng Xiang	Swimming pools and IAQ

Review from my last lecture

Today's topics

- Particle sources
 - Indoor emissions
 - Resuspension
 - Outdoor transport (infiltration and penetration)
- Particle losses
 - Deposition
 - Filtration and air cleaners (next week)

PARTICLE SOURCES

Indoors and outdoors

Particle sources

Indoor and outdoor particle sources vary by particle size ullet

Table 1 Attributes	of particle size mod	es	
mode	diameter	indoor source	example composition
ultrafine accumulation coarse	≤ 0.1 µm 0.1-2 µm > 2 µm	gas cooking tobacco smoke cleaning	soot organic liquids crystal solids

- Indoor emission sources are typically episodic
 - Tend to be brief, intermittent, and highly variable
 - Steady state rarely applies
 - Outdoor particle levels and ventilation rates often vary with time

- Combustion processes
 - Incense smoke, candle burning, cigarette smoke
- Cooking
 - Gas and electric cooking both
 - Biomass cookstoves in developing world
- Cleaning activities
 - Resuspension from vacuum cleaners
 - Aerosolization from tap water in humidifiers

Indoor Sources of Ultrafine and Accumulation Mode Particles: Size Distributions, Size-Resolved Concentrations, and Source Strengths

 Ultrafine (<100 nm) and accumulation mode (0.1-1 µm) particles were monitored in an occupied house for 3 years

- Data at 5 minute intervals

- The largest emission sources were described in this paper
 - Cooking with a gas stove
 - Toasting with electric toasters and toaster ovens
 - Burning candles and incense
 - Using a gas-powered clothes dryer

TADLEO

IABLE 2 Indoor and outdoor contributions to particle number concentrations (cm ⁻³)					
Size (nm)	N	Total	Outdoor	Indoor	Outdoor contribution (%)
10–18	174092	1109	337	772	30
18-50	258812	2730	1162	1568	43
50-100	258812	1936	1057	879	55
100-200	258812	955	680	275	71
200-450	259174	219	180	40	82
450-950	86611	25	18	7	70

- Biggest contributor to indoor UFPs was indoor sources
- Biggest contributor to 0.1-1 µm particles was outdoors

Number and duration^a of 18 selected activities, with modal

diameters for both particle number and volume				
	Number of events	Average	Modal diameter (nm)	
Activity		(min)	Number	Volume
Gas clothes dryer	68	179	<10	181
Tea & toast	375	33	<10	51
Tea	36	31	11	46
Breakfast	149	33	11	66
Stir-fry	24	131	36	118
Unknown indoor sources	451	80	36	131
Dinner	225	83	39	181
Fried eggs	41	51	40	181
Unknown outdoor sources	174	207	40	429
Gas oven	58	19	45	95
Broiled fish, baked potato	217	53	46	98
Citronella candle	54	167	46	638
Open windows	52	120	53	241
Tortillas	221	48	64	146
Incense	11	114	64	250
Outdoors	502	31	69	168
Smoky cooking oil	5	128	69	233
No indoor sources	888	1188	69	269

Indoor particle sources: Outdoor infiltration

Indoor particle sources: Tea, toast, breakfast

Indoor particle sources: heavy cooking

Indoor particle sources: Oven cooking

Indoor particle sources: Incense and candles

Indoor particle sources: Daily profiles

Wallace, 2006 Aerosol Sci Technol

Typical indoor UFP emission rates

UFP emitting device	Size range	Emission rate (#/min)	Reference
Flat iron with steam	20-1000 nm	6.0×10 ⁹	Afshari et al. (2005)
Electric frying pan	10-400 nm	1.1-2.7×10 ¹⁰	Buonnano et al. (2009)
3D printer w/ PLA	10-100 nm	~2.0×10 ¹⁰	Stephens et al. (2013)
Vacuum cleaner	20-1000 nm	3.5×10 ¹⁰	Afshari et al. (2005)
Scented candles	20-1000 nm	8.8×10 ¹⁰	Afshari et al. (2005)
Gas stove	20-1000 nm	1.3×10 ¹¹	Afshari et al. (2005)
3D printer w/ ABS	10-100 nm	~1.9×10 ¹¹	Stephens et al. (2013)
Cigarette	20-1000 nm	3.8×10 ¹¹	Afshari et al. (2005)
Electric stove	20-1000 nm	6.8×10 ¹¹	Afshari et al. (2005)
Frying meat	20-1000 nm	8.3×10 ¹¹	Afshari et al. (2005)
Radiator	20-1000 nm	8.9×10 ¹¹	Afshari et al. (2005)
Laser printers	6-3000 nm	4.3×10 ⁹ to 3.3×10 ¹²	He et al. (2010)
Cooking on a gas stove	10-400 nm	1.1-3.4×10 ¹²	Buonnano et al. (2009)

I/O particle ratios: combination of I and O sources

RESUSPENSION AND DEPOSITION

Indoor source: Resuspension

- Early experiments noticed that indoor particle concentrations were elevated above background during human activities
- This is termed the "personal cloud" effect
 - Basically we disturb dust reservoirs on furniture and textiles
 - e.g., dusting, folding clothes, making a bed
 - We call this "resuspension"
 - The level of vigor of the activity is an important factor in resuspension
 - Resuspension is generally greater for larger particles

Indoor source: Resuspension

Figure 3. Personal, indoor, and outdoor PM_5 estimated mass concentration time series.

Ferro al., 2004 J Expo Anal Environ Epidem

Indoor sources: Resuspension

Indoor sources: Resuspension

Figure 4. PEM/SIM ratio by particle size during human activity periods for two independent studies. Ferro et al. (1999) collected personal and indoor concentrations using Met-One Model 237B laser particle counters for six vacuuming experiments in a separate Redwood City, CA, USA, residence.

- We can define a resuspension rate:
 - $r = \frac{R}{L}$ R = resuspension flux (mg/m²-hr) L = surface concentration (mg/m²)
- And incorporate it into mass balance on indoor air:

$$\frac{dC_i}{dt} = \frac{E_i}{V} + C_{out,i} \Big[\lambda_{vent} (1 - \eta_{vent,i}) + \lambda_{nat} + \lambda_{inf} P_i \Big] - C_i \Big[\lambda_{vent} + \lambda_{nat} + \lambda_{inf} + k_{dep,i} + \lambda_{filt} \eta_{filt,i} \Big] + \frac{rAL}{V} \Big]$$

• And tie that into mass balance on surface of interest (A)

$$A\frac{dL_i}{dt} = k_{dep,i}C_iV - rAL + E_{track-in}$$

Indoor sources: Resuspension

Qian and Ferro, 2008 Aerosol Sci Technol

Indoor sources: Resuspension

- We discussed deposition last lecture
 - Primarily in terms of settling velocity
 - Also mentioned diffusion, impaction, thermophoresis, and electrostatic forces
- I showed one of the first good modeling efforts for size-dependent deposition rate loss coefficients in a room:
 - k_{dep} in units of 1/hr

$$k_{dep} = \frac{v_d A}{V}$$

Fig. 5. Particle deposition loss-rate coefficient, β , for typical room dimensions (3 m high $\times 4 \text{ m} \times 5 \text{ m}$) according to the current model. Friction velocities of 0.3–3 cm s⁻¹ approximately span the range expected for mechanically ventilated indoor spaces. Predictions assume air pressure is 1 atm, temperature is 293 K and particle density is 1.0 g cm⁻³.

• There have been several studies that measured particle deposition in real environments as well

Procedure for finding deposition rates is similar to finding AER or finding reactive deposition rates

 Inject particles and measure the subsequent decay

Fig. 2. Typical particle concentration profiles over the course of an experiment for selected particle size ranges. Pulsed particle injection occurred at 0.5 h.

• Deposition in a chamber under different air speeds and furnishing conditions

• Review of deposition in a chamber under different scenarios

Deposition in real homes

Fig. 3. The average of particle deposition rates for the 18 particle size intervals under normal ventilation conditions (Error bars represent one standard deviation). The polynomial fit line with the correlation coefficient ($R^2 = 0.33$).

Fig. 4. The average of particle deposition rates for the 18 particle size intervals under minimum ventilation conditions (Error bars represent one standard deviation). The polynomial fit line with the correlation coefficient ($R^2 = 0.84$).

• Deposition in real homes

Indoor particles review

- What have we learned so far?
- We can describe particle concentrations by size (diameter)
- Particles of various sizes exist indoors
 - The smallest and largest particles are typically indoor generated
 - Medium sized (fine) particles often infiltrated from outdoors
- Once indoors, particles of different sizes deposit on surfaces at different rates
 - And deposit in different regions of our lungs
 - Particle density and shape can also affect this (refer to settling velocity)
- We've seen some ways particle deposition, emission, and resuspension are measured
 - We still need to focus on a major source:
 - Penetration from outdoors
 - And we still need to focus on a major loss:
 - HVAC filtration
PARTICLE 'PENETRATION' (I.E., 'INFILTRATION')

Either a removal term or a source term, depending...

Particle penetration

Indoor/outdoor particle sources

Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor

- First reviews I/O measurements
- Then focuses on outdoor infiltrated particles only
 - "Infiltration factor"
 - "Penetration factor"

Outdoor particle sources: Infiltration factors

Chen and Zhao, 2011 Atmos Environ

40

Particle infiltration/penetration

- Particle penetration is both a source and loss/filtration mechanism
 - Probability that a particle penetrates through a building envelope
 - A large value for penetration factors means a larger number of particles infiltrate from outdoors through cracks and gaps in building envelopes
 - Low "envelope removal efficiency"
 - Large value for penetration factors means high "envelope removal efficiency"
 - Reduced indoor proportions of outdoor particles

$$P_{envelope} = \frac{C_{inside}}{C_{outside}} = 1 - E_{envelope}$$

Objectives for lecture on *P*

- Discuss previous research on *P*
 - Including research from my graduate work
- Discuss how to measure P
 - And how to solve for P

Liu and Nazaroff (2001) Atmos Environ

- Particle penetration through cracks and in fiberglass insulation
 - Also interested in reactive gases
- Modeling study

The deal is:

- All buildings envelopes have leaks
- Leaks are assumed to one of three types of 'cracks'
- If we can understand particle deposition in cracks
 - We should be able to understand particle penetration through leaks

Flow through cracks

• Relationship between pressure (ΔP) and flow (Q)

Fig. 1. Configuration of three types of idealized cracks through building envelopes.

Flow through a crack

$$Q = c_d A \sqrt{\frac{2\Delta P}{\rho}}$$

If $Re >> 1$:
 $Q \propto \sqrt{\Delta P}$
Short, tall flow channel \rightarrow inertial forces dominate
If $Re << 1$:
 $Q \propto \Delta P$
Long, thin flow channel \rightarrow viscous forces dominate

$$\Delta P = \frac{12\mu z}{wd^3}Q + \frac{\rho C}{2d^2w^2}Q^2$$

What are typical crack dimensions?

- This is a very tough parameter to get
 - We have no metrics that tell us anything about crack size and distribution among envelopes
- A study from the 1950s suggested that crack heights were normally less than 2.5 mm around closed windows
 - Another in the 1970s reported 0.5-7.5 mm crack heights common in buildings
- Not much other information here
 - And cracks/leaks aren't always obvious
- This remains a big limitation to this modeling study

Assuming flow, crack width, and variety of ΔP ...

Liu and Nazaroff 2001 Atmos Environ

Modeling particle penetration through cracks

- They considered there major deposition mechanisms:
 - Brownian diffusion
 - Gravitational settling
 - Impaction (found not to be important in a separate analysis)

. 1

Gravitational

 P_{g}

$$= 1 - \frac{V_s z}{dU} \qquad \begin{array}{c} V \\ z \\ d \\ U \\ U \end{array}$$

$$V_s$$
 = particle settling velocity
z = crack length
d = crack height
U = air speed through crack

• Diffusion

$$P_d = 0.915e^{-1.885\frac{4Dz}{d^2U}} + 0.0592e^{-22.3\frac{4Dz}{d^2U}} + 0.026e^{-152\frac{4Dz}{d^2U}} + \dots$$

D = particle diffusion coefficient

$$P_{total} = P_g \times P_d \times P_i$$

Liu and Nazaroff 2001 Atmos Environ

Model cracks

Fig. 1. Configuration of three types of idealized cracks through building envelopes.

Fig. 3. Schematic of airflow paths through wall cavities in wood-frame construction. (a) Uninsulated wall cavity; (b) Wall cavity filled with fiberglass insulation; and (c) Fiberglass-insulated wall cavity with airflow bypass.

Liu and Nazaroff 2001 Atmos Environ

Model results

Fig. 4. Particle penetration factor as a function of particle diameter, crack height, and pressure difference for a straight-through crack with flow length z = 3 cm.

Model results

Fig. 5. Particle penetration factor as a function of particle diameter, crack height, and flow length at a fixed pressure drop of $\Delta P = 10$ Pa.

Model results

Fig. 6. Overall particle penetration factor for a building with crack area distributed uniformly with respect to crack height. Results are presented for three different ranges of crack sizes.

Comparison of model results to chamber tests

- Follow up study: Liu and Nazaroff (2003)
 - Does the model work?
 - Still using idealized cracks

Figure 1. Configuration of crack apparatus (not to scale).

Comparison of model results to chamber tests

Figure 5. Comparison of model predictions with experimental data for aluminum cracks. Results are presented for four sets of crack dimensions (crack heights of 0.25 mm and 1.0 mm and crack flow lengths of 4.3 cm and 9.4 cm), with an applied pressure difference, $\Delta P = 4$ Pa.

Figure 7. Experimental particle penetration factors for six crack materials at crack heights of 0.25 mm and 1 mm and with $\Delta P = 4$ Pa, as compared with model predictions. Liu and Nazaroff 2003 Atmos Environ

Figure 9. Comparison of model calculations and experimental results for naturally broken brick with crack heights of 0.25 mm and 1 mm.

DATA FROM REAL BUILDINGS

Real building data

- Models are helpful for understanding:
 - Is a phenomenon important?
 - What impacts the phenomenon?
- Models are severely limited in terms of:
 - Applicability to real environments
- Measurements are absolutely required in real buildings
 - But data can be messy and experiments challenging
 - One issue is that you need fluctuations in the data to solve for two parameters with only one mass balance (loss rates and penetration factors)
 - Another issue is that indoor sources greatly influence your data

Specific measurements of *P*

- Vette et al. 2001 Aerosol Sci Technol
- Chao et al. 2003 Atmos Environ
- Thatcher et al. 2003
- Rim et al. 2010 Environ Sci Technol
- Stephens and Siegel 2012 Indoor Air

Vette et al. 2001 Aerosol Sci Technol

- Single residence Fresno CA
- Size-resolved indoor and outdoor particle measurements for 2 months
- Deposition rates were first determined by measuring indoor decay after elevation from outdoor particles
 - Simultaneous AER measurements

Vette et al. 2001

Chao et al. 2003 Atmos Environ

- Six non-smoking high-rise apartments
- 0.02-10 µm particles
- Deposition rate estimated from indoor decay data
 - Simultaneous AER measurements
- Penetration factor determined using transient data and estimate of deposition rate

Chao et al. 2003

Key:

* Results obtained from P-Trak monitor

The error bar represents one standard deviation from the mean value

Estimates of P ranged from 0.5 to 0.8

Thatcher et al. 2003 Aerosol Sci Technol

- Two houses in CA
 - Size-resolved 0.3 to 10 µm particles
- New method of measuring P
 - "Concentration rebound method"
 - Involved artificially elevating indoor concentrations to measure decay
 - Then operate a HEPA filter to remove most of the indoor particles
 - Then observe the indoor concentration as it "rebounds" to normal levels due to the infiltration of outdoor particles only
 - Estimate P from steady state I/O ratio
 - Simultaneous AER measurements

Particle rebound method from Thatcher et al. 2003

Thatcher et al. (2003)

Thatcher et al. (2003)

Summary of penetration factors

Rim et al. 2010 Environ Sci Technol

- Another method of measuring penetration factor
 - Focused on size-resolved UFPs
- Performed in an unoccupied test house
 - Measurements conducted over entire weekend periods
 - Some with windows closed; some with a window open 8 cm
 - Simultaneous AER measurements
- Data: indoor-outdoor UFPs time-varying for 60 hours
 - AER every 4 hours

$$\frac{dC_{in}}{dt} = PaC_{out} - (a + k_{comp})C_{in}$$

Discretized solution to mass balance for each particle size

$$C_{in,t} = Pa_t C_{out,t} \Delta t + (1 - (a_t + k_{comp}) \Delta t) C_{in,t-1}$$

$$C_{in,t} = Pa_t C_{out,t} \Delta t + (1 - (a_t + k_{comp}) \Delta t) C_{in,t-1}$$

- With 60 hours of data, the bestfitting values of *P* and k_{dep} that fit this equation were found using Excel Solver to minimize the sum of the absolute differences between the modeled and observed indoor number concentrations
- Measured versus predicted indoor air concentrations compared via linear regression
 - If R² was > 0.90, they were happy with their estimates of *P* and k_{dep}

Rim et al. 2010 Environ Sci Technol

• Deposition rates

Rim et al. 2010 Environ Sci Technol

Rim et al., 2010 Environ Sci Technol
NEWER WORK

By me (as a graduate student)

Penetration results from Thatcher et al. (2003)

*Estimated Leakage Area (ELA) = f (blower door air leakage coefficients & ΔP)

Hypothesis: Particle penetration and building leakage are correlated

- Particles can penetrate through cracks in building envelopes
 - Theoretically a function of:
 - Crack height and length
 - Air speed through leaks Liu and Nazaroff, 2001 Atmos Environ
- Are building details and particle penetration factors correlated?
 - e.g., air leakage parameters or building age
 - Can we learn a lot from a little?
 - Need a better test method for measuring P quickly

Refined PM penetration test method

- Setup particle monitors indoors and outdoors | TSI P-Traks
 - Logging simultaneously at 1-minute intervals
- Perform blower door test (multi-point, de-press. and press.)
 - Afterward: continue pressurizing space, open a door/window across the house
 - Flushes indoor air of any previous indoor PM sources
 - Elevates indoor PM & replaces w/ the same aerosol that exists outdoors
- Close doors and windows, turn on all ceiling, HVAC, and mixing fans
- Elevate indoor CO₂ for air exchange testing | Small CO₂ tank
- Leave the house
 - Measure subsequent decay (+ CO₂ decay | TSI Q-Trak)
- Continue measuring I/O PM and CO₂ decay for ~2-3 hours
 - Solve for k using 1^{st} order decay using data from first ~10-30 minutes
 - Solve for *P* using forward-marching discretization of mass balance
 - Use estimate of k from previous step
- Total test time: ~3-4 hours

• 20 nm to 1 µm

PM infiltration: Refined test method

PM infiltration: Test homes

Stephens and Siegel, 2012 Indoor Air

Particle infiltration results

PM infiltration: What can we learn?

Blower Doors

Blower door tests

Source: ASTM E 779 and ASHRAE Standard 119

PM infiltration and air leakage

- Particle penetration factors (*P* for 20-1000 nm particles)
 - Significantly correlated with coefficient from blower door tests (C)
 - Spearman's ρ = 0.71 (p < 0.001)

• Association is strong, but predictive ability is low

Stephens and Siegel, accepted to Indoor Air, March 2012

PM infiltration: Outdoor particle source and air leakage

Leakier homes had much higher outdoor particle source rates

Potential socioeconomic implications: low-income homes are leakier

Chan et al., 2005 Atmos Environ

PM infiltration and age of homes

Older homes also had much higher outdoor particle source rates

Implications for submicron PM exposure: 19 homes

Combined effects:

$$F_{\text{inf}} = \frac{C_{in}}{C_{out}} = \frac{P \times AER}{AER + \beta + f \frac{\eta_{HAC}Q_{HAC}}{V}}$$

	•	
	Lower bound	Upper bound
Penetration factor, P	0.17	0.72
Air exchange rate, AER (1/hr)	0.13	0.95
Outdoor source term, $P \times AER$ (1/hr)	0.02	0.62
Indoor loss rate, $\beta + \eta Q/V$ (1/hr)	3.24	0.31
Fractional HAC operation, f	55.3%	10.7%
I/O submicron ratio (<i>F</i> _{inf})	0.01	0.70

Factor of ~60 to ~70 difference in indoor proportion of outdoor particles between:

- A new airtight home with a very good filter and high HAC operation, and
- A leaky old home with a poor filter and low HAC operation
- Some potential for predictive ability using:
 - Age of home
 - Building airtightness test results
- Knowledge of HAC filter type
- I/O climate conditions

Summary on particle penetration

- In the last 10 years, more measurements of penetration factors through envelopes have been measured
- To date specific penetration measurements have been made in around 40 homes
 - We've made about 20 of these measurements!
- Penetration factors seem to range from ~0.2 to ~1.0 depending on particle size and building envelope characteristics
 - Variations have a big impact on human exposure
- We're continuing to explore potential associations between particle penetration and building characteristics
 - Ultimate goal is to perform a lot of these tests, then never have to perform them again