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RADIATION 
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(finishing up) 



Radiation: Short-wave and Long-wave 
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Terrestrial long-wave  
Radiation (diffuse/reflected) 
Avg. λ = 10 µm 

Solar short-wave  
Radiation (direct) 
Avg. λ = 0.5 µm 



Solar radiation striking a surface (high temperature) 

•  Most solar radiation is at short wavelengths 
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Solar radiation 
striking a surface: 

qsolar =αIsolarSolar radiation: 
(opaque surface) 

Transmitted solar radiation:  
(transparent surface) 

qsolar = τ Isolar



Absorptivity (α) for solar (short-wave) radiation 
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Radiation heat transfer (surface-to-surface) 
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•  We can write the net thermal radiation heat transfer between 
surfaces 1 and 2 as: 

 

A2, T2, ε2 

A1, T1,ε1 

Q1→2 =
A1σ T1

4 −T2
4( )

1−ε1
ε1

+
A1
A2

1−ε2
ε2

+
1
F12

where ε1 and ε2  are the surface emittances, 

A1 and A2  are the surface areas

and F1→2  is the view factor from surface 1 to 2

F1→2  is a function of geometry only 

q1→2 =
Q1→2
A1

σ = Stefan-Boltzmann constant = 5.67×10−8 W
m2·K4  

T = Absolute temperature [K]



Emissivity (ε) of common materials 
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View factors, F12 

•  Radiation travels in directional beams 
–  Areas and angle of incidence between two exchanging surfaces 

influence radiative heat transfer 
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Some common “view factors”… 

A1F1→2 = 0.5((ac+bd )− (ad +bc))



Typical view factors 
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•  Other common view factors from ASHRAE HOF 



Long-wave radiation example 

•  What is the net radiative exchange between the wall behind 
me and the wall at the opposite end of the classroom?  
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Simplifying radiation 

•  We can also define a radiation heat transfer coefficient that is 
analogous to other heat transfer coefficients 

•  When A1 = A2, and T1 and T2 are within ~50°F of each other, 
we can approximate hrad with a simpler equation: 
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hrad =
4σTavg

3

1
ε1
+
1
ε2
−1 Tavg =

T1 +T2
2

where 

Qrad ,1→2 = hrad A1 T1 −T2( ) = 1
Rrad

A1 T1 −T2( )



Simplifying surface radiation 

•  We can also often simplify radiation from: 

•  To: 
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Q1→2 =
A1σ T1

4 −T2
4( )

1−ε1
ε1

+
A1
A2

1−ε2
ε2

+
1
F12

 

Q1→2 = εsurf AsurfσF12 T1
4 −T2

4( )  
Particularly when dealing with large differences in areas, 
such as sky-surface or ground-surface exchanges 



Heat transfer in building science: Summary 
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Conduction Convection Radiation 
 Long-wave 

q= k
L
Tsurf ,1−Tsurf ,2( )
k
L
=U =

1
R

Rtotal = R1 + R2 + R3 + … 

Rtotal =
1

Utotal

Utotal =
A1
Atotal

U1 +
A2
Atotal

U2 + ...

qconv = hconv Tfluid −Tsurf( )

Rconv =
1
hconv

q1→2 =
σ Tsurf ,1

4 −Tsurf ,2
4( )

1−ε1
ε1

+
A1
A2

1−ε2
ε2

+
1
F12

qrad ,1→2 = hrad Tsurf ,1 −Tsurf ,2( )

hrad =
4σTavg

3

1
ε1
+
1
ε2
−1

q1→2 = εsurfσF12 Tsurf ,1
4 −Tsurf ,2

4( )  For thermal bridges and 
combined elements: 

Rrad =
1
hrad

qsolar =αIsolarSolar radiation: 
(opaque surface) 

Transmitted solar radiation:  
(transparent surface) 

qsolar = τ Isolar

Nearly every basic 
equation you need to 
know about heat 
transfer in buildings 
is on this slide! 



COMBINED-MODE HEAT TRANSFER 
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Combined mode heat transfer 

•  Nearly all heat transfer situations in buildings include more 
than one mode of heat transfer 

•  When more than one heat transfer mode is present, we can 
compute heat loss using resistances (of all kinds) in series 
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Combined modes of heat transfer 

•  Example problem: Convection and wall R-values 
•  An R-21 stud wall should also include the effect of inner and 

outer surface convection coefficients 
–  Assume typical interior surface convection coefficients and assume 

the outer surface coefficient during winter conditions is appropriate 
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Typical convective surface resistances 
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•  We often use the values given below for most conditions 

 
Surface 
Conditions 

Horizontal 
Heat Flow 

Upwards  
Heat Flow 

Downwards 
Heat Flow 

Indoors: Rin	

 0.12 m2K/W (SI) 
0.68 h⋅ft2⋅°F/Btu (IP) 

 

0.11 m2K/W (SI) 
0.62 h⋅ft2⋅°F/Btu (IP) 

0.16 m2K/W (SI) 
0.91 h⋅ft2⋅°F/Btu (IP) 

Rout: 6.7 m/s 
wind (Winter) 

0.030 m2K/W (SI) 
0.17 h⋅ft2⋅°F/Btu (IP) 

Rout: 3.4 m/s 
wind (Summer) 

0.044 m2K/W (SI) 
0.25 h⋅ft2⋅°F/Btu (IP) 



More combined heat transfer 
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k1 k2 
Air 

space 

qcond ,2

qrad ,airspace

qconv ,airspace
qcond ,1

T2 
T1 

Rconv

RradRcond ,1 Rcond ,2

•  When more than one mode of heat transfer exists at a 
location (usually convection + radiation), resistances get 
placed in parallel 
–  Example: Heat transfer in a cavity 



Combined modes of heat transfer 

•  Example problem: Radiant barrier in a residential wall 

19 

A building designer wishes to 
evaluate the R-value of a 1 inch 
wide air gap in a wall for its 
insulation effect. The resistance to 
heat flow offered by convection is 
small, so she proposes lining the 
cavity’s inner and outer surfaces 
with a highly reflecting aluminum foil 
film whose emissivity is 0.05.  
 
Find the R-value of this cavity, 
including both radiation and 
convection effects, if the surface 
temperatures facing the gap are 
7.2°C and 12.8°C. 



Modes of heat transfer in a building 
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Where are we going? Building energy balances 

•  Taken altogether, each of the heat transfer modes we’ve 
discussed can be combined with inputs for climate data, 
material properties, and geometry to make up a building’s 
energy balance 
–  We will revisit this for heating and cooling load calculations 
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SOLAR RADIATION 
A few notes on: 
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Solar radiation 

•  Solar radiation is an important term in the “energy balance” 
of a building 
–  Must account for it while calculating loads 
–  This is particularly true for perimeter zones and for peak cooling loads 

•  Solar radiation is also important for daylighting design 
•  We won’t cover the full equations for predicting solar 

geometry and radiation striking a surface in this class 
–  But will discuss basic relationships and where to download data 
–  CAE 463/524 Building Enclosure Design goes into more detail 
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Solar radiation striking an exterior surface 

•  The amount of solar radiation received by a surface depends 
on the incidence angle, θ 

•  This is a function of: 
–  Solar geometry 

•  Location 
•  Time 

–  Surface geometry 
–  Shading/obstacles 
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Components of solar radiation 

•  Solar radiation striking a surface consists of three main 
components: 
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Isolar = Idirect + Idiffuse + Ireflected
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Components of solar radiation 

•  Direct solar radiation (Idirect) is a function of the normal 
incident irradiation (IND) on the earth’s surface and the 
solar incidence angle of the surface of interest, θ 
–  Where IND is a function of day of the year and atmospheric properties 

•  Diffuse solar radiation (Idiffuse) is the irradiation that is 
scattered by the atmosphere 
–  Function of IND, atmospheric properties, and surface’s tilt angle 

•  Reflected solar radiation (Ireflected) is the irradiation that is 
reflected off the ground (it becomes diffuse) 
–  Function of IND, solar geometry, ground reflectance, and surface tilt angle 
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Visualizing solar relationships 

•  For visualizing geometry, using programs like IES-VE 
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Downloading solar data 

•  For hourly sun positions, you can build a calculator or use 
one from the internet 
–  http://www.susdesign.com/sunposition/index.php 
–  http://www.esrl.noaa.gov/gmd/grad/solcalc/azel.html 

•  For solar position and intensity (from time and place) 
–  http://www.nrel.gov/midc/solpos/solpos.html 
–  Output of interest = “global irradiance on a tilted surface” 

•  For actual hourly solar data (direct + diffuse in W/m2) 
–  http://rredc.nrel.gov/solar/old_data/nsrdb/ 
–  Output of interest = “direct normal radiation” à adjust using cosθ 

•  Note: “typical meteorological years” 
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Typical meteorological year (TMY) 

•  For heating and cooling load calculations and for hourly 
building energy simulations we often rely on a collection of 
weather data for a specific location 

•  We generate this data to be representative of more than just 
the previous year 
–  Represents a wide range of weather phenomena for our location 
–  TMY3: Data for 1020 locations from 1960 to 2005 

•  Composed of 12 typical meteorological months 
•  Each month is pulled from a random year in the range 
•  Actual time-series climate data 
•  Mixture of measured and modeled solar values 
•  http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/ 

–  Variables include: outdoor temperature, direct normal 
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What to do with solar data once you have it? 

•  Solar data can be used on exterior opaque surfaces to help 
determine exterior surface temperatures 

•  Solar data can also be used on exterior transparent surfaces 
(e.g. windows and skylights) to determine how much solar 
radiation enters an indoor environment 
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qsolar =αIsolar

qsolar = τ Isolar



Sol-air temperatures 

•  If we take an external surface with a combined convective and radiative 
heat transfer coefficient, hconv+rad 

•  If that surface now absorbs solar radiation (αIsolar), the total heat flow at 
the exterior surface becomes: 

•  To simplify our calculations, we can define a “sol-air” temperature that 
accounts for all of these impacts: 

•  Now we can describe heat transfer at that surface as: 

31 

qconv+rad = hconv+rad Tair −Tsurf( )

qconv+rad = hconv+rad Tair −Tsurf( )+α Isolar

Tsol−air =Tair +
α Isolar
hconv+rad

qtotal = hconv+rad Tsol−air −Tsurf( )
convection + 

 LWR 

qsolar 



Sol-air temperatures 
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Solar radiation and external surface temperatures 

•  We can also use air temperatures and material properties (emissivity and 
absorptance) to estimate exterior surface temperatures that are exposed 
to radiation 

–  These are not perfectly accurate but provide a reasonable estimate 
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Source: Straube and Burnett 



Solar radiation and windows (i.e., fenestration) 

•  Solar radiation through a single glaze 
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100% incident 
8% reflected 

80% transmitted 

Thus 12% absorbed 
8% rad/conv outward 
4% rad/conv inward 

84% total transmitted 



Windows and total heat gain 

•  The total heat gain of a window is the sum of two terms: 
–  The solar radiation heat gain from solar irradiation (transmittance) 
–  Conductive/convective/radiative thermal heat gain from the 

temperature difference between the interior and exterior 

•  In the summer, both terms are positive towards the interior 
and add heat gains 

•  In the winter, solar is positive inwards but the other is 
negative towards the exterior 
–  Net heat gain may vary in direction 
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Heat gain through windows 

•  Calculating the conductive heat gain through a window is 
easy: 

•  Accounting for solar heat gain is more complicated 
–  Need to include absorption of solar energy and re-radiation of thermal 

energy 
–  Need to include spectral and angular characteristics of radiation and 

glazing 

•  We can do this with a simplified metric 
–  The solar heat gain coefficient (SHGC): 
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Q =UAΔT

Qsolar ,window = IsolarA( )SHGC



Solar heat gain coefficient, SHGC 

•  For a single pane of glass: 
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Qsolar ,window = IsolarA( )SHGC

SHGC = τ +α U
hext

1
U
=
1
hint

+
1
Rglass

+
1
hext

*Rglass is negligible 



Solar heat gain coefficient, SHGC 

•  For double glazing with a small air space: 
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SHGC = τ +αouter pane
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Router pane
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hairspace

+
1

Rinner pane
+
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hext

*Router pane and Rinner pane are negligible 



Manufacturer supplied SHGC 
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•  Glazing manufacturers will 
measure and present SHGC for 
normal incidence according to 
the methods of NFRC 200 
–  National Fenestration Rating 

Council has developed methods 
for rating and labeling SHGC, U 
factors, air leakage, visible 
transmittance and condensation 
resistance of fenestration products 

•  In reality, SHGC is a function of 
incidence angle (θ) 

Qsolar ,window = IdirectSHGC(θ )A+ (Idiffuse+reflected )SHGCdiffuse+reflected A



Complex SHGC 

•  SHGC, solar transmittance, reflectance, and absorptance properties for 
glazing all vary with incidence angles of solar radiation 

•  The ASHRAE Handbook of Fundamentals 2013 Chapter 15 provides 
data for a large variety of glazing types 
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What about window assemblies? 

•  In addition to glazing material, windows also include framing, 
mullions, muntin bars, dividers, and shading devices 
–  These all combine to make fenestration systems 

•  Total heat transfer through an assembly: 
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Qwindow =UApf Tout −Tin( )+ IsolarApf SHGC
Where: 
U = overall coefficient of heat transfer (U-factor), W/m2K 
Apf = total projected area of fenestration, m2 

Tin = indoor air temperature, K 
Tout = outdoor air temperature, K 
SHGC = solar heat gain coefficient, - 
Isolar = incident total irradiance, W/m2 



Window U-factors 

•  U-values (or U-factors) for windows include all of the 
elements of the fenestration system 
–  Center of glass properties (cg) 
–  Edge of glass properties (eg) 
–  Frame properties (f) 

•  The overall U-factor is estimated using area-weighted U-
factors for each: 
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U =
UcgAcg +UegAeg +U f Af

Apf



U-values and multiple layers of glazing 
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2013 ASHRAE Handbook of Fundamentals: Chapter 15 

•  We can separate glass panes with air-tight layers of air or other gases 



Combined U-factor data: ASHRAE 2013 
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Thermal resistances of still air cavities 
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2005 ASHRAE Handbook of Fundamentals: Chapter 25; 2013 ASHRAE Handbook of Fundamentals: Chapter 26 



What about shading? 

•  Shading devices, including 
drapes and blinds, can mitigate 
some solar heat gain 

•  We can attempt to describe this 
with an indoor solar 
attenuation coefficient (IAC) 

•  Heat gain through a window can 
be modified as follows: 
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Qwindow =UApf Tout −Tin( )+ Idirect Apf SHGC(θ )IAC(θ ,Ω)+ (Idiffuse+reflected )Apf SHGCdiffuse+reflected IACdiffuse+reflected

IAC is a function of incidence angle, θ, and the angle created by a shading device 



Blinds and drapes: ASHRAE Handbook 
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Combined thermal transmittance for walls + fenestration 

•  Single assemblies of walls, windows, doors, etc. can be 
combined into an overall U-value for a building’s enclosure 
–  Combined thermal transmittance: Uo or Utotal	



•  Area-weighted average U-value 
•  Just like center of glass, edge of glass, frame analysis for windows 
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Utotal =
Uwall Awall +UwindowsAwindows +UdoorsAdoors

Atotal

We will use this later for calculating heating and cooling loads 


