Building design and operational choices that impact indoor exposures to outdoor particulate matter inside residences

ASHRAE IAQ 2013 Thursday, October 17, 2013

Built Environment Research @ III] 🐋 🚓 🆄 🛹

Advancing energy, environmental, and sustainability research within the built environment

www.built-envi.com

Twitter: <u>@built_envi</u>

Brent Stephens, Ph.D. Civil, Architectural and Environmental Engineering Illinois Institute of Technology brent@iit.edu

Motivation: Health effects and outdoor PM

• Epidemiological studies show associations between elevated outdoor particulate matter (PM) and adverse health effects

Pope et al., **2002** *J Am Med Assoc*; Peng et al., **2005** *Am J Epidem*; Pope and Dockery, **2006** *J Air Waste Manag Assoc*; Miller et al., **2007** *New Engl J Med*; Stölzel et al., **2007** *J Expo Sci Environ Epidem*; Andersen et al., **2010** *Eur Heart J;* Brook et al. **2010** *Circulation*; Ostro et al., **2010** *Environ Health Persp*

- Effects ranging from respiratory symptoms to mortality
- PM₁₀, PM_{2.5}, and ultrafine particles (UFP, < 100 nm)
 - Also specific constituents and seasonal differences
- But we spend most of our time indoors
 ~87% of the time on average (~69% at home) Klepeis et al., 2001 J Expo Anal Env Epi
- Outdoor particles can infiltrate and persist in homes with varying efficiencies Chen and Zhao, 2011 AE; Williams et al., 2003 AE; Kearney et al., 2010 AE
- Much of our exposure to outdoor PM often occurs indoors
 - Often at home

Meng et al., **2005** *J Expo Anal Environ Epidem;* Kearney et al., **2010** *Atmos Environ;* Wallace and Ott **2011** *J Expo Sci Environ Epidem;* MacNeill et al. **2012** *Atmos Environ*

Mechanisms that impact indoor exposures to outdoor PM

Mechanisms that impact indoor exposures to outdoor PM

"Penetration Factor"
If P = 1:
The envelope offers no
protection
If P = 0:
The envelope offers
complete protection

 $P\lambda$

 $\lambda + k + j$

 $\frac{\mathcal{C}_{in}}{C_{out}} = F_{inf}$

Penetration from outdoors

 C_{in} = indoor concentration (#/m³) C_{out} = outdoor concentration (#/cm³) P = penetration factor (-) λ = air exchange rate (1/hr) k = surface deposition rate (1/hr) f = fractional HVAC runtime (-) η = filter removal efficiency (-) Q = HVAC airflow rate (m³/hr) V = indoor air volume (m³)

4

Mechanisms that impact indoor exposures to outdoor PM

5

Importance of source and removal mechanisms

- Building envelope penetration
 - Only recently has varying particle infiltration been implicated in observed health disparities with outdoor PM
 - Largely by varying AER, not penetration factor

Hodas et al., 2012 J Expo Sci Environ Epidem; Chen et al., 2012 Epidemiology

HVAC removal

- Prevalence of air-conditioning has been shown to be a modifier in $PM_{2.5}$ and PM_{10} mortality
 - Little information on filter removal efficiency and HVAC system runtime

Janssen et al., **2002** *Environ Health Persp*; Franklin et al., **2007** *J Expo Sci Environ Epidem*; Bell et al., **2009** *Epidemiology*

Goals of this work

Further explore the impacts of building design and operation

 including building envelopes and HVAC filters – on
 indoor PM of outdoor origin

Key parameters:

- Particle penetration factor, P
- Air exchange rate, λ
- Particle removal by HVAC filter, $\eta Q/V$
- HVAC system runtime, f
- Using recently measured data from recent studies on residential (and some small commercial) buildings
- Can we also **predict** these impacts?
- Describe one case study on a net zero energy capable home with mechanical ventilation

RECENT PARTICLE INFILTRATION MEASUREMENTS

Measuring particle infiltration

- Particles can penetrate through cracks in building envelopes
 - Theoretically a function of:
 - Crack geometry
 - Air speed through leaks Liu and Nazaroff, 2001 Atmos Environ
- Are building details and particle penetration factors correlated?
 - e.g., air leakage parameters or building age
 - Needed a test method for measuring P quickly
- Applied a particle penetration test method in 19 homes

Stephens and Siegel, 2012 Indoor Air

PM infiltration: Test homes

Test method: Submicron particle infiltration (20-1000 nm)

Stephens and Siegel, Indoor Air 2012 22(6):501-512

Particle infiltration results: P and AER

Outdoor particle source terms: P×AER

Outdoor particle sources and envelope air tightness

Leakier homes had much higher outdoor particle source rates Older homes also had much higher outdoor particle source rates

· Potential socioeconomic implications: low-income homes are older/leakier

Chan et al., 2005 Atmos Environ

RECENT MEASUREMENTS OF HVAC FILTRATION

HVAC filter removal: Efficiency is not the whole story

Stephens and Siegel, Indoor Air 2013

16

• Submicron particle loss with HVAC system operating 100%

HVAC system runtimes in other homes and small offices

- Mean HVAC runtimes in TX ranged 10.7% to 55.3%
 - Median $f \approx 21\%$ (influenced by climate and thermostat settings)

Stephens et al., 2011 Building and Environment 46(10):1972-1983

VARIATIONS IN EXPOSURES

Across observed range of envelope penetration, filter efficiency, and runtimes

Implications for submicron PM exposure

- Penetration factors ranged 0.17 to 0.72
- AER ranged 0.13 hr⁻¹ to 0.95 hr⁻¹
- Outdoor particle source terms ranged 0.02 hr⁻¹ to 0.62 hr⁻¹
 - Factor of ~30 difference from lowest to highest
 - Higher in older, leakier homes
- Indoor removal rates ranged 0.31 hr⁻¹ to 3.24 hr⁻¹
 - Factor of ~10 difference from least efficient to most efficient filter
 - Varied with rated filter efficiency (particularly for high-efficiency)
- HVAC fractional operation ranged 10.7% to 55.3%
 - Factor of ~5 difference
 - Varied with thermostat settings, occupancy, and outdoor climate

Implications for submicron PM exposure

• (Combined effects: $F_{inf} = \frac{C_{in}}{C_{out}} = \frac{P \times AER}{AER + k + f \frac{\eta Q}{V}}$		
		Lower bound	Upper bound
	Penetration factor, P	0.17	0.72
	Air exchange rate, AER (1/hr)	0.13	0.95
	Outdoor source term, P×AER (1/hr)	0.02	0.62
	Indoor loss rate, $k + \eta Q/V$ (1/hr)	3.24	0.31
	Fractional HVAC operation, f	55.3%	10.7%
	I/O submicron PM ratio (Find)	0.01	0.70

I/O submicron PM ratio (F_{inf})

Factor of ~70 difference in indoor proportion of outdoor particles between:

- A new airtight home with a very good filter and high HVAC operation, and
- A leaky old home with a poor filter and low HVAC operation
- Some potential for predictive ability using:
 - Age of home
 - Building airtightness test results
- Knowledge of HVAC filter type
- I/O climate conditions

A CAUTIONARY TALE

In a new net-zero energy capable home (built 2011)

Impacts of high-efficiency HVAC systems

- One of the test homes (Site 15) had a dedicated mechanical ventilation system
- Outdoor air supply duct ran through an energy recovery ventilator (ERV) and was installed directly into the HVAC return plenum
- Previous results were only for natural infiltration, when the system was unplugged and capped
 - Relying on envelope leakage alone for ventilation air
- We repeated the test a second time with the ERV/OAS unit operating...

Impacts of mechanical ventilation

- This home was responsible for both the lowest and the highest envelope penetration factors!
 - Depending on whether or not the ERV was operating
- Problem: The ERV/OAS was ducted to directly *downstream* of the HVAC filter

Conclusions

- Outdoor particulate matter (PM) infiltration and persistence can vary greatly between homes
 - Generally lower in newer, tighter homes than in older, leakier homes
 - We also may be able to predict PM infiltration
 - Other design, construction, and operational parameters can further widen this gap between homes
 - HVAC filtration selection and system runtime, among others
- In very low-energy homes, envelopes are probably tight enough to nearly prevent infiltration of outdoor PM
 - Turns focus to indoor-generated pollutants
 - Effects can be *completely reversed* by poor construction!

Acknowledgments

- Jeffrey Siegel, University of Toronto
- All of our homeowners and occupants
- Funding (from Ph.D. work at UT-Austin)
 - University of Texas at Austin Continuing Fellowship
 - NSF IGERT Award DGE #0549428
 - ASHRAE Grant-In-Aid & RP-1299
 - Thrust 2000 Endowed Graduate Fellowship

Questions/Comments

Built Environment Research @ III] 🗫 🎧 🍂 🧹

Advancing energy, environmental, and sustainability research within the built environment

www.built-envi.com

Twitter: <u>@built_envi</u>

Brent Stephens, Ph.D. Civil, Architectural and Environmental Engineering Illinois Institute of Technology brent@iit.edu