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Motivation: Health effects and outdoor PM 

•  Epidemiological studies show associations between elevated 
outdoor particulate matter (PM) and adverse health effects 

–  Effects ranging from respiratory symptoms to mortality 
–  PM10, PM2.5, and ultrafine particles (UFP, < 100 nm) 

•  Also specific constituents and seasonal differences 

•  But we spend most of our time indoors 
~87% of the time on average (~69% at home) 

•  Outdoor particles can infiltrate and persist in homes with 
varying efficiencies  

•  Much of our exposure to outdoor PM often occurs indoors 
–  Often at home 
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Mechanisms that impact indoor exposures to outdoor PM 
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“Penetration Factor” 
If P = 1: 
The envelope offers no 
protection 
If P = 0: 
The envelope offers 
complete protection 

Cin = indoor concentration (#/m3) 
Cout = outdoor concentration (#/cm3) 
P = penetration factor (-) 
λ = air exchange rate (1/hr) 
k = surface deposition rate (1/hr) 
f = fractional HVAC runtime (-) 
η = filter removal efficiency (-) 
Q = HVAC airflow rate (m3/hr) 
V = indoor air volume (m3) 



Mechanisms that impact indoor exposures to outdoor PM 
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HVAC removal 
•  Filter efficiency (η) 
•  Recirculation rate (Q/V) 
•  System runtime (f) 

Cin = indoor concentration (#/m3) 
Cout = outdoor concentration (#/cm3) 
P = penetration factor (-) 
λ = air exchange rate (1/hr) 
k = surface deposition rate (1/hr) 
f = fractional HVAC runtime (-) 
η = filter removal efficiency (-) 
Q = HVAC airflow rate (m3/hr) 
V = indoor air volume (m3) 



Importance of source and removal mechanisms 

•  Building envelope penetration 
–  Only recently has varying particle infiltration been implicated in 

observed health disparities with outdoor PM 
•  Largely by varying AER, not penetration factor 

•  HVAC removal 
–  Prevalence of air-conditioning has been shown to be a modifier in 

PM2.5 and PM10 mortality 
•  Little information on filter removal efficiency and HVAC system runtime 
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Goals of this work 

•  Further explore the impacts of building design and operation 
– including building envelopes and HVAC filters – on 
indoor PM of outdoor origin 
Key parameters: 
–  Particle penetration factor, P	


–  Air exchange rate, λ 
–  Particle removal by HVAC filter, ηQ/V	


–  HVAC system runtime, f	



•  Using recently measured data from recent studies on 
residential (and some small commercial) buildings 

•  Can we also predict these impacts? 

•  Describe one case study on a net zero energy capable 
home with mechanical ventilation 
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RECENT PARTICLE INFILTRATION 
MEASUREMENTS 
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Measuring particle infiltration 
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TSI P-Traks 
20 – 1000 nm 

•  Particles can penetrate through cracks in building envelopes 
–  Theoretically a function of: 

•  Crack geometry 
•  Air speed through leaks 

•  Are building details and particle penetration factors correlated? 
–  e.g., air leakage parameters or building age 
–  Needed a test method for measuring P quickly 

•  Applied a particle penetration test method in 19 homes 

Liu and Nazaroff, 2001 Atmos Environ 

Stephens and Siegel, 2012 Indoor Air 
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PM infiltration: Test homes 
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Test method: Submicron particle infiltration (20-1000 nm) 

11 

b

Use first portion of  
data to solve for k: 

Use estimate of k and 
all of the data to  
solve for P: 

a

P

k 

k 

Parameter Estimation 

5000

10000

1000

500

Pa
rt
ic
le
	
  C
on

ce
nt
ra
tio

n	
  
(#
	
  c
m

-­‐3

)

0.0 0.5 1.0 1.5 2.0 2.5
Time	
   (hours)

Outdoor 

Indoor 
1500

2000

2500

3000

3500

Pa
rt
ic
le
	
  C
on

ce
nt
ra
tio

n	
  
(#
	
  c
m

-­‐3

)

0.00 0.05 0.10 0.15 0.20
Time	
   (hours)

λ = 0.48±0.01 hr-1 

k = 3.24±0.03 hr-1 

P = 0.62±0.06 

( )tk
tintin eCC +−
== λ
0,,

( )( ) tCkCPCC tintouttintin Δ+−+= −−− 1,1,1,, λλ

P
ar

tic
le

 c
on

ce
nt

ra
tio

n 
(#

/c
m

3 )
 

Stephens and Siegel, Indoor Air 2012 22(6):501-512 



Particle infiltration results: P and AER 
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Outdoor particle source terms: P×AER 
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Outdoor particle sources and envelope air tightness 
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Leakier homes had much higher outdoor particle source rates 

•  Potential socioeconomic implications: low-income homes are older/leakier 
Chan et al., 2005 Atmos Environ 

Stephens and Siegel, Indoor Air 2012 22(6):501-512 

Older homes also had much higher outdoor particle source rates 

vs. blower door test results 



RECENT MEASUREMENTS OF HVAC 
FILTRATION 
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HVAC filter removal: Efficiency is not the whole story 

Stephens and Siegel, Aerosol Sci. Technol. 2012 46(5), 504-513 
Stephens and Siegel, Indoor Air 2013 
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Indoor particle removal rates 
•  Submicron particle loss with HVAC system operating 100% 
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HVAC system runtimes in other homes and small offices 
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•  Mean HVAC runtimes in TX ranged 10.7% to 55.3% 
–  Median f ≈ 21% (influenced by climate and thermostat settings) 



VARIATIONS IN EXPOSURES 
Across observed range of envelope penetration, filter efficiency, and runtimes 
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Implications for submicron PM exposure 

•  Penetration factors ranged 0.17 to 0.72 
•  AER ranged 0.13 hr-1 to 0.95 hr-1 

•  Outdoor particle source terms ranged 0.02 hr-1 to 0.62 hr-1 

–  Factor of ~30 difference from lowest to highest 
–  Higher in older, leakier homes 

•  Indoor removal rates ranged 0.31 hr-1 to 3.24 hr-1 

–  Factor of ~10 difference from least efficient to most efficient filter 
–  Varied with rated filter efficiency (particularly for high-efficiency) 

•  HVAC fractional operation ranged 10.7% to 55.3%  
–  Factor of ~5 difference 
–  Varied with thermostat settings, occupancy, and outdoor climate 
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Implications for submicron PM exposure 

•  Combined effects: 
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Lower bound Upper bound 
Penetration factor, P 0.17 0.72 
Air exchange rate, AER (1/hr) 0.13 0.95 
Outdoor source term, P×AER (1/hr) 0.02 0.62 
Indoor loss rate, k + ηQ/V (1/hr) 3.24 0.31 
Fractional HVAC operation, f 55.3% 10.7% 
I/O submicron PM ratio (Finf) 0.01 0.70 

Factor of ~70 difference in indoor proportion of outdoor particles between: 
•   A new airtight home with a very good filter and high HVAC operation, and 
•   A leaky old home with a poor filter and low HVAC operation 

•   Some potential for predictive ability using: 
•   Age of home 
•   Building airtightness test results 

•   Knowledge of HVAC filter type 
•   I/O climate conditions 

Finf =
Cin

Cout

=
P× AER

AER+ k + f ηQ
V



A CAUTIONARY TALE 
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In a new net-zero energy capable home (built 2011) 



Impacts of high-efficiency HVAC systems 

•  One of the test homes (Site 15) had a dedicated mechanical 
ventilation system 

•  Outdoor air supply duct ran through an energy recovery 
ventilator (ERV) and was installed directly into the HVAC 
return plenum 

•  Previous results were only for natural infiltration, when the 
system was unplugged and capped 
–  Relying on envelope leakage alone for ventilation air 

•  We repeated the test a second time with the ERV/OAS unit 
operating… 
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Impacts of mechanical ventilation 

•  This home was responsible for both the lowest and the 
highest envelope penetration factors! 
–  Depending on whether or not the ERV was operating 

•  Problem: The ERV/OAS was ducted to directly downstream 
of the HVAC filter 24 

 ERV/OAS on 
 AER = 0.51 hr-1 

 P = 0.78 
 I/O = 0.40 

 ERV off/OAS closed 
 AER = 0.13 hr-1 

 P = 0.17 
 I/O = 0.09 
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 P = 0.17 
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 ERV/OAS on 
 AER = 0.51 hr-1 

 P = 0.78 
 I/O = 0.40 

 ERV off/OAS closed 
 AER = 0.13 hr-1 

 P = 0.17 
 I/O = 0.09 



Conclusions 

•  Outdoor particulate matter (PM) infiltration and persistence 
can vary greatly between homes 
–  Generally lower in newer, tighter homes than in older, leakier homes 

•  We also may be able to predict PM infiltration 
–  Other design, construction, and operational parameters can further 

widen this gap between homes 
•  HVAC filtration selection and system runtime, among others 

•  In very low-energy homes, envelopes are probably tight 
enough to nearly prevent infiltration of outdoor PM 
–  Turns focus to indoor-generated pollutants 
–  Effects can be completely reversed by poor construction! 
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