Indoor exposures to outdoor air pollution

2013 ACSA/AIA Housing Research Lecture Series Monday October 7, 2013

Built Environment Research

Advancing energy, environmental, and sustainability research within the built environment

www.built-envi.com

Twitter: @built envi

Brent Stephens, Ph.D.

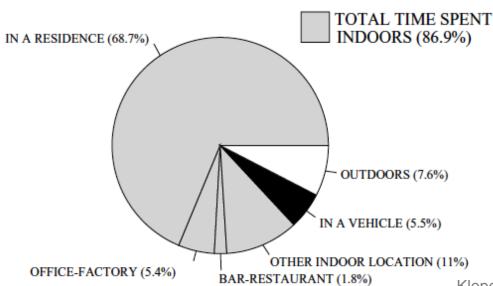
Civil, Architectural and Environmental Engineering

Illinois Institute of Technology

brent@iit.edu

What do you think of when you hear "air pollution?"

What do I think of when I hear "air pollution?"



NHAPS - Nation, Percentage Time Spent

Total n = 9,196

Americans spend almost 90% of their time indoors

~75% at home or in an office

Indoor vs. outdoor air pollution

Air pollution is both an indoor and an outdoor issue

- Many indoor pollutant sources
- Outdoor pollutants also infiltrate indoors

Much of our exposure to outdoor air pollution occurs indoors

Health effects of indoor exposures are difficult to assess

Time-consuming, invasive, and costly

Many connections are already made with outdoor pollutants

- There remains a need to advance knowledge of indoor exposures
 - Can improve connections to health effects
 - Can inform how building design and operation impacts exposures

Some outdoor airborne pollutants are regulated

National Ambient Air Quality Standards (NAAQS)

- US EPA and the Clean Air Act (1970)
- Set limits for 6 "criteria" pollutants

Pollutants Regulated Outdoors

Carbon monoxide (CO)

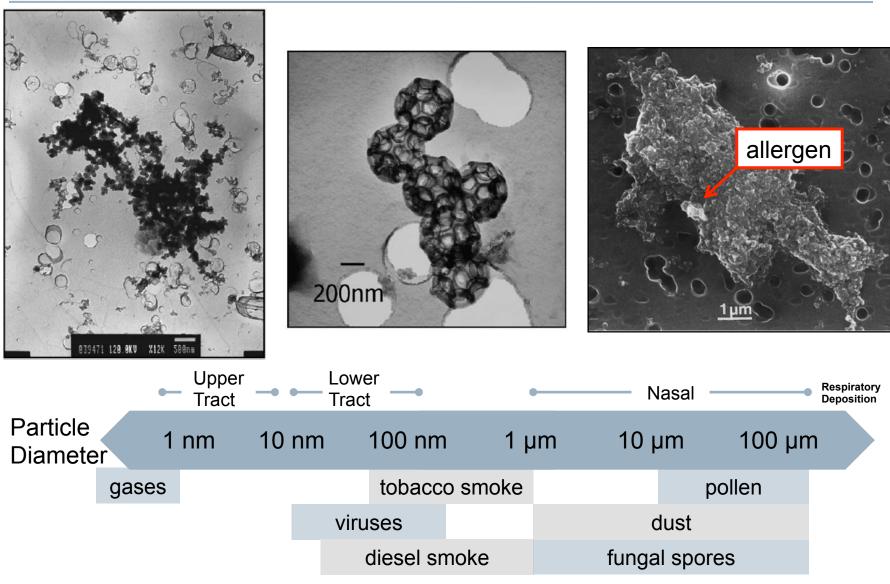
Lead (Pb)

Nitrogen dioxide (NO₂)

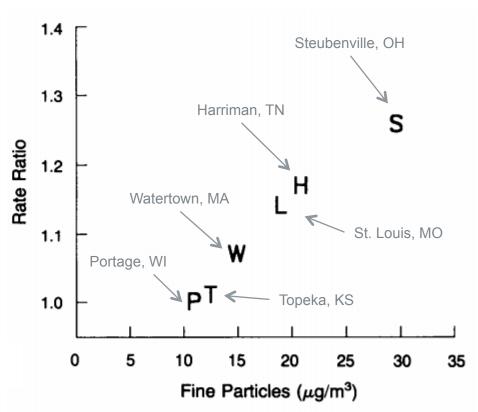
Ozone (O_3)

Particulate matter PM_{2.5} and PM₁₀

Sulfur dioxide (SO₂)

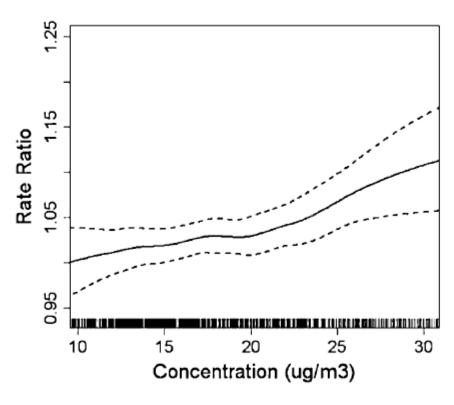

Sources of particulate matter

Particulate matter: Up close



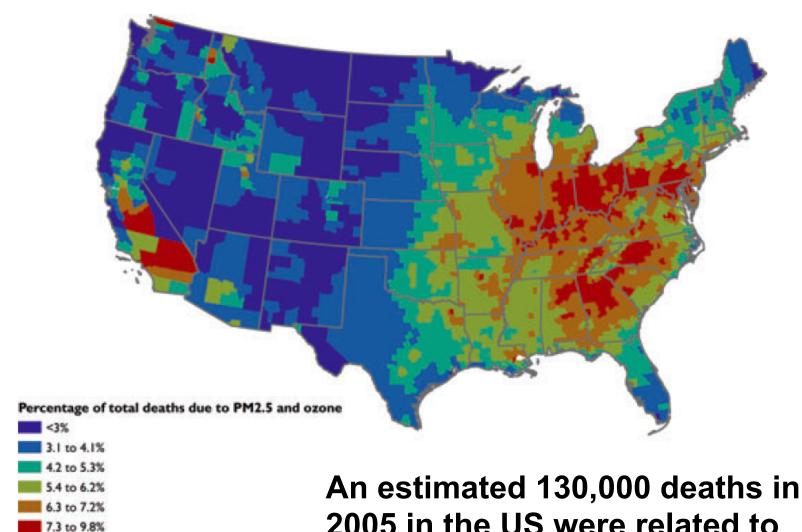
Particle deposition in the respiratory system

Outdoor PM and health effects

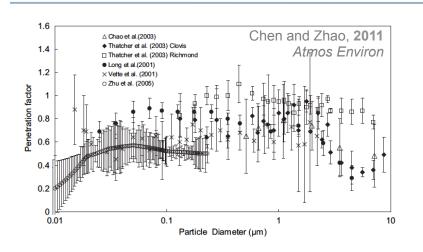

PM_{2.5} and mortality

Mean PM_{2.5} concentration measured outdoors in six cities over several years in the 1980s

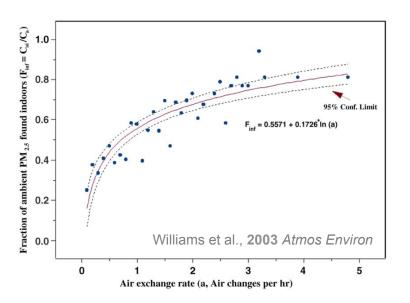
Dockery et al., 1993 New Engl J Med

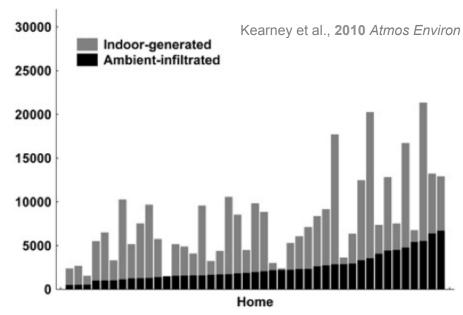

PM_{2.5} and pediatric ER visits

3-day average PM_{2.5}data measured outdoors in Atlanta, GA from 1993 to 2004

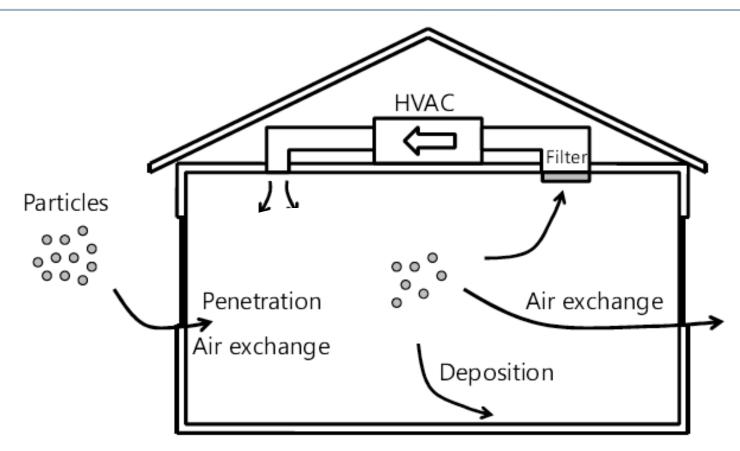

Strickland et al., 2010 Am J Respir Crit Care Med

Health effects: Outdoor air pollution and mortality




2005 in the US were related to outdoor PM_{2.5}

Indoor proportion of outdoor particles



Exposure to outdoor PM often occurs indoors

Often at home

Meng et al., **2005** *J Expo Anal Environ Epidem*Kearney et al., **2010** *Atmos Environ*Wallace and Ott **2011** *J Expo Sci Environ Epidem*MacNeill et al. **2012** *Atmos Environ*

Mechanisms that impact indoor exposures to outdoor PM

 C_{in} = indoor concentration (#/m³)

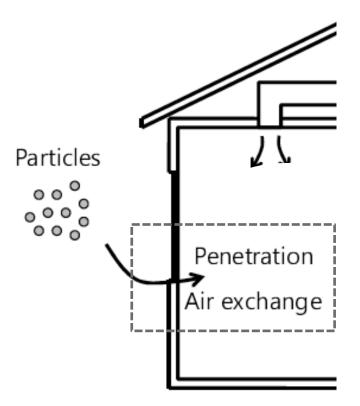
 C_{out} = outdoor concentration (#/cm³)

P = penetration factor(-)

 $\lambda = \text{air exchange rate (1/hr)}$

k = surface deposition rate (1/hr)

f = fractional HVAC runtime (-)


 η = filter removal efficiency (-)

Q = HVAC airflow rate (m³/hr)

 $V = \text{indoor air volume (m}^3)$

$$\frac{C_{in}}{C_{out}} = F_{inf} = \frac{P\lambda}{\lambda + k + f} \frac{\text{Penetration from outdoors}}{\lambda + k + f} \frac{\eta Q}{V}$$
 Air exchange Deposition HVAC filter removal 12

Mechanisms that impact indoor exposures to outdoor PM

"Penetration Factor"

If P = 1:

The envelope offers no protection

If P = 0:

The envelope offers complete protection

 C_{in} = indoor concentration (#/m³)

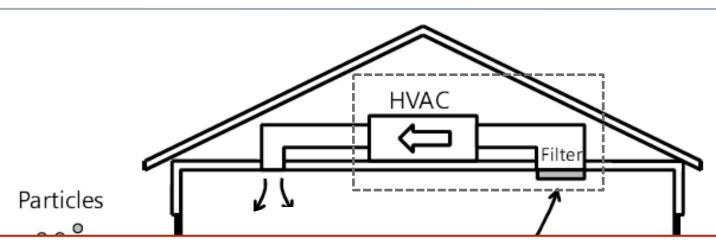
 C_{out} = outdoor concentration (#/cm³)

P = penetration factor(-)

 $\lambda = \text{air exchange rate } (1/\text{hr})$

k = surface deposition rate (1/hr)

f = fractional HVAC runtime (-)


 η = filter removal efficiency (-)

Q = HVAC airflow rate (m³/hr)

 $V = \text{indoor air volume (m}^3)$

$$\frac{C_{in}}{C_{out}} = F_{inf} = \frac{P\lambda}{\lambda + k + f} \frac{\text{Penetration from outdoors}}{V}$$

Mechanisms that impact indoor exposures to outdoor PM

"Filter efficiency"

If $\eta = 1$:

The filter offers complete protection (when the system operates)

If $\eta = 0$:

The filter offers no protection (ever)

```
C_{in} = indoor concentration (#/m<sup>3</sup>)
```

 C_{out} = outdoor concentration (#/cm³)

P =penetration factor (-)

 λ = air exchange rate (1/hr)

k = surface deposition rate (1/hr)

f = fractional HVAC runtime (-)

 η = filter removal efficiency (-)

Q = HVAC airflow rate (m³/hr)

 $V = \text{indoor air volume (m}^3)$

$$\frac{C_{in}}{C_{out}} = F_{inf} = \frac{P\lambda}{\lambda + k + f \frac{\eta Q}{V}}$$

Filter removal HVAC operation

Importance of source and removal mechanisms

Building envelope penetration

- Only recently has varying particle infiltration been implicated in observed health disparities with outdoor PM
 - Largely by varying AER, not penetration factor

Hodas et al., 2012 J Expo Sci Environ Epidem; Chen et al., 2012 Epidemiology

HVAC removal

- Prevalence of air-conditioning has been shown to be a modifier in PM_{2.5} and PM₁₀ mortality
 - Little information on filter removal efficiency and HVAC system runtime

Janssen et al., **2002** Environ Health Persp; Franklin et al., **2007** J Expo Sci Environ Epidem; Bell et al., **2009** Epidemiology

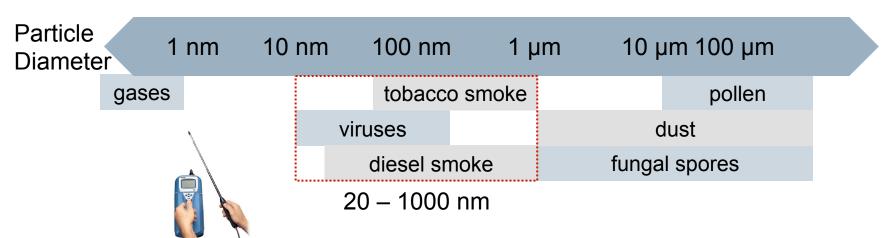
Goals of this work

 Further explore the impacts of building envelopes and HVAC filters on indoor PM of outdoor origin

Key parameters:

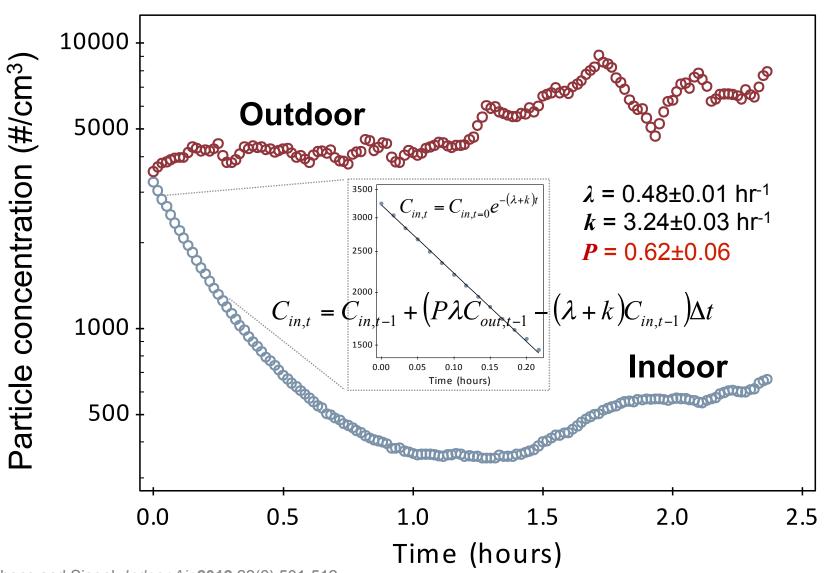
- Particle penetration factor, P
- Particle removal by HVAC filter, $\eta Q/V$
- HVAC system runtime, f
- Using measured data from recent studies on residential (and some small commercial) buildings
- Can we also predict these impacts?

PARTICLE INFILTRATION MEASUREMENTS

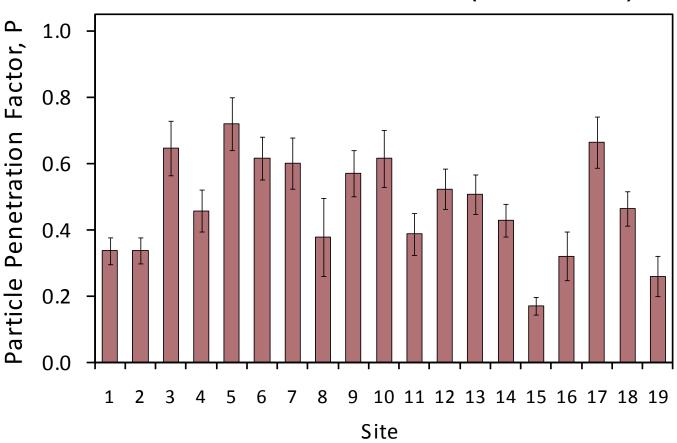

Measuring particle infiltration

- Particles can penetrate through cracks in building envelopes
 - Theoretically a function of:
 - Crack geometry
 - Air speed through leaks
 Liu and Nazaroff, 2001 Atmos Environ

- e.g., air leakage parameters or building age
- Need a better test method for measuring *P* quickly
- Applied a particle penetration test method in 19 homes

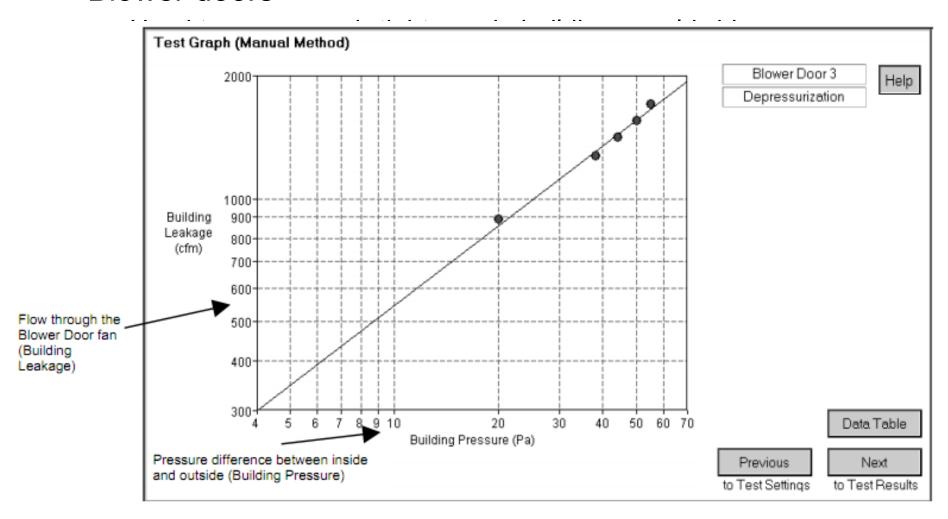

Stephens and Siegel, 2012 Indoor Air

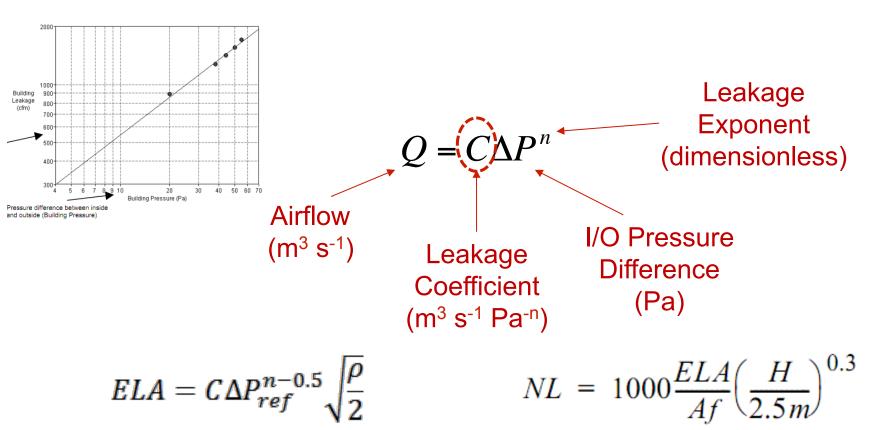
PM infiltration: Test homes



Test method | Particulate matter (20-1000 nm)

Particle infiltration results


Particle Penetration Factors (20 – 1000 nm)

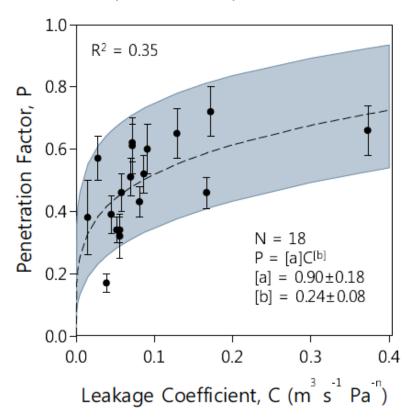

Mean (\pm SD) = 0.47 \pm 0.15 | Range = 0.17 \pm 0.03 to 0.72 \pm 0.08

PM infiltration: What can we learn?

Blower doors

Blower door tests

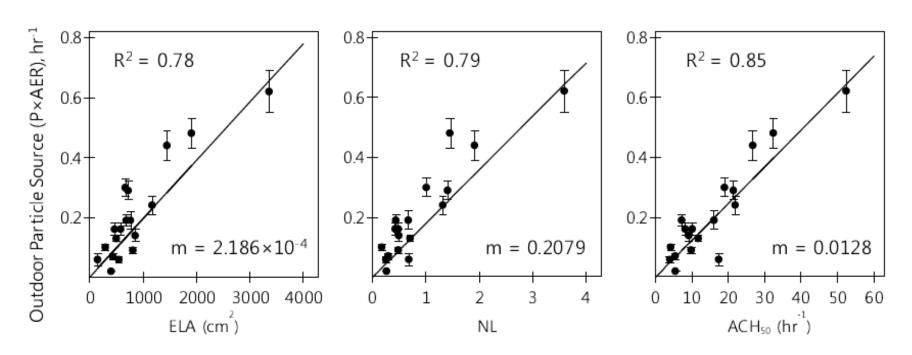
Estimated Leakage Area (cm²)


Normalized Leakage, NL (dimensionless)

$$ACH_{50} = rac{Q_{50\;Pa}}{V}$$

Air Changes per Hour @ 50 Pa (hr⁻¹)

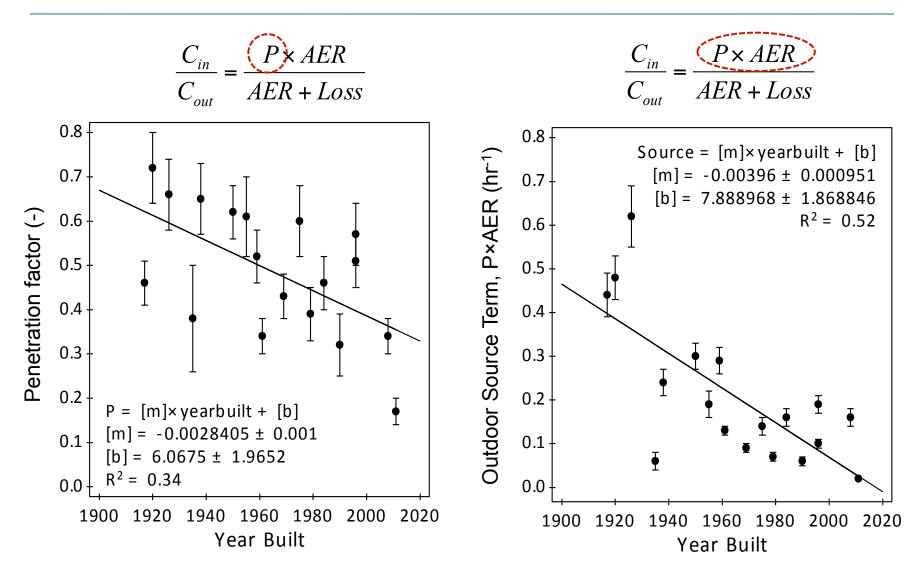
PM infiltration and air leakage


- Particle penetration factors (P for 20-1000 nm particles)
 - Significantly correlated with coefficient from blower door tests (C)
 - Spearman's ρ = 0.71 (p < 0.001)

Association is strong, but predictive ability is low

PM infiltration: Outdoor particle source and air leakage

$$\frac{C_{in}}{C_{out}} = \frac{P \times AER}{AER + Loss}$$

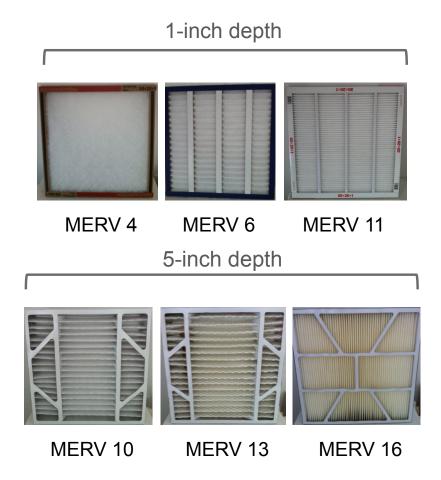


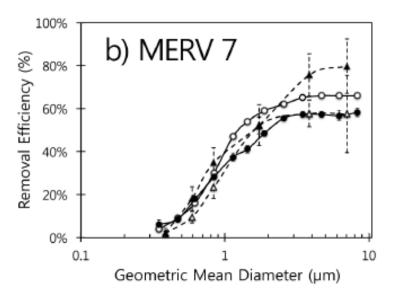
Leakier homes had much higher outdoor particle source rates

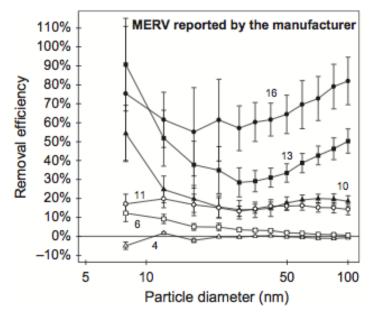
Potential socioeconomic implications: low-income homes are leakier

Chan et al., 2005 Atmos Environ

PM infiltration and age of homes

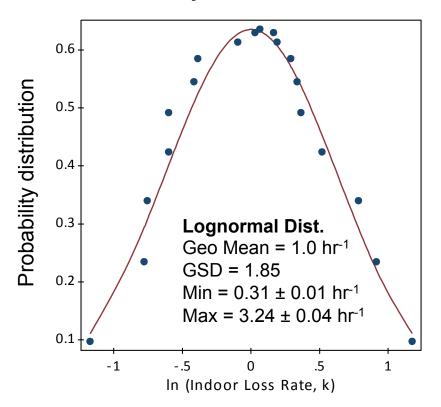

Older homes also had much higher outdoor particle source rates


MEASUREMENTS OF HVAC FILTRATION

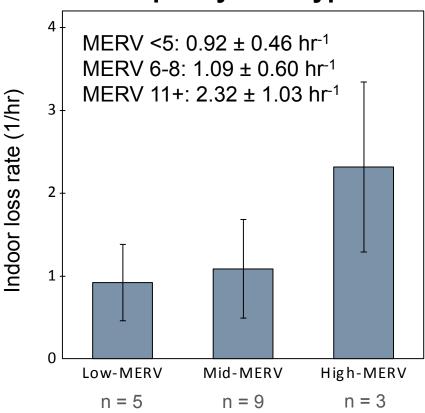

HVAC filter performance

ASHRAE Standard 52.2 → MERV

Filter efficiency for 0.3 to 10 µm particles



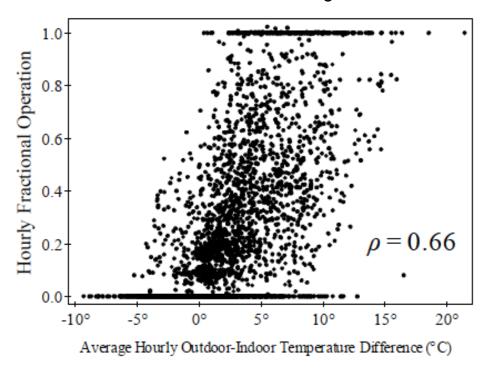
Stephens and Siegel, *Aerosol Sci. Technol.* **2012** 46(5), 504-513 Stephens and Siegel, *Indoor Air* **2013**


Indoor particle removal rates

Submicron particle loss with HVAC system operating 100%

$$Loss = k + f \frac{\eta Q}{V}$$
where $f = 1$

Split by filter type


HVAC system runtimes

HVAC Removal =
$$f \frac{\eta Q}{V}$$

- HVAC systems in U.S. homes typically only operate in response to indoor-outdoor climate conditions
 - -f varies in time
- Previously collected dataset (ASHRAE RP-1299)
 - 8 residential systems and 9 light-commercial systems
 - Monitored 1 day per month for 1 year (cooling period only)
 - 3,100+ hours of cooling operation over 114 days
 - Explored data for system runtimes

HVAC system runtimes in 17 buildings

- Mean HVAC runtimes ranged 10.7% to 55.3%
 - Median f≈ 21%
 - Increased with indoor-outdoor ΔT
 - · Also with lower thermostat settings

Increase in hourly duty fraction per °C rise in average hourly indooroutdoor temperature difference

			N
Site	% per °C	R ²	(hours)
1	6.0%	0.71	175
2	3.7%	0.33	180
3	2.9%	0.68	215
4	7.2%	0.68	226
5	9.3%	0.69	222
6	9.1%	0.80	161
7	4.7%	0.71	204
8	7.3%	0.62	164
9	6.0%	0.69	175
10	4.9%	0.73	171
11	11.3%	0.67	211
12	4.5%	0.68	91
13	7.9%	0.61	218
14	7.1%	0.78	173
15	9.2%	0.63	182
16	4.0%	0.41	152
17	2.4%	0.22	150
Average	6.3%	Tota1	3070
Median	6.0%		

Median increase in hourly runtime per °C rise in average indoor-outdoor temperature difference: ~6% per °C

VARIATIONS IN EXPOSURES

Across observed range of envelope penetration, filter efficiency, and runtimes

Implications for submicron PM exposure

- Penetration factors ranged 0.17 to 0.72
- AER ranged 0.13 hr⁻¹ to 0.95 hr⁻¹
- Outdoor particle source terms ranged 0.02 hr⁻¹ to 0.62 hr⁻¹
 - Factor of ~30 difference from lowest to highest
 - Higher in older, leakier homes
- Indoor removal rates ranged 0.31 hr⁻¹ to 3.24 hr⁻¹
 - Factor of ~10 difference from least efficient to most efficient filter
 - Varied with rated filter efficiency (particularly for high-efficiency)
- HVAC fractional operation ranged 10.7% to 55.3%
 - Factor of ~5 difference
 - Varied with thermostat settings, occupancy, and outdoor climate

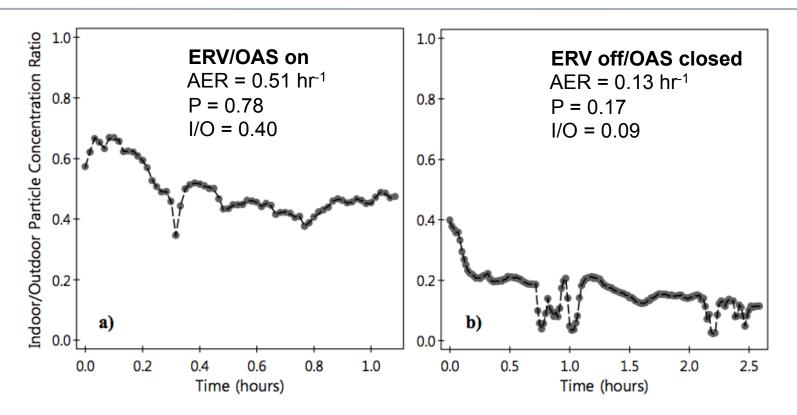
Implications for submicron PM exposure

• Combined effects:
$$F_{\text{inf}} = \frac{C_{in}}{C_{out}} = \frac{P \times AER}{AER + k + f \frac{\eta Q}{V}}$$

	Lower bound	Upper bound
Penetration factor, P	0.17	0.72
Air exchange rate, AER (1/hr)	0.13	0.95
Outdoor source term, P×AER (1/hr)	0.02	0.62
Indoor loss rate, $k + \eta Q/V$ (1/hr)	3.24	0.31
Fractional HVAC operation, f	55.3%	10.7%
I/O submicron PM ratio (F_{inf})	0.01	0.70

Factor of ~60 to ~70 difference in indoor proportion of outdoor particles between:

- · A new airtight home with a very good filter and high HVAC operation, and
- A leaky old home with a poor filter and low HVAC operation
- Some potential for predictive ability using:
 - Age of home
 - Building airtightness test results
- Knowledge of HVAC filter type
- I/O climate conditions


A CAUTIONARY TALE

In a net-zero energy capable home

Impacts of high-efficiency HVAC systems

- One of the test homes (Site 15) had a dedicated mechanical ventilation system
- Outdoor air supply duct ran through an energy recovery ventilator and was installed directly into the HVAC return plenum
- Previous results were only for natural infiltration, when the system was unplugged and capped
 - Relying on envelope leakage alone for ventilation air
- We repeated the test a second time with the ERV/OAS unit operating...

Impacts of high-efficiency HVAC systems

- This home was responsible for both the lowest and the highest envelope penetration factors!
 - Depending on whether or not the ERV was operating
- Problem: The ERV/OAS was ducted to directly downstream of the HVAC filter

37

Implications for design and construction

- Importance of performance testing
 - Blower door tests at a minimum
 - More advanced IAQ tests would be ideal
- Attention to detail
 - Envelope air sealing
 - HVAC system design and construction
 - HVAC filter choice
- Stay informed
 - Keep an eye on the researchers and publications mentioned herein
 - Plenty of opportunities to advance research in housing energy and IAQ

Acknowledgments

- Jeffrey Siegel at the University of Texas at Austin / University of Toronto
- All of our homeowners and occupants
- Funding
 - University of Texas at Austin Continuing Fellowship
 - NSF IGERT Award DGE #0549428
 - ASHRAE Grant-In-Aid
 - Thrust 2000 Endowed Graduate Fellowship

Questions/Comments

Built Environment Research

email: brent@iit.edu
web: www.built-envi.com

