Ultrafine particle emissions from desktop 3D printers

AAAR 2013 Portland, OR Friday, October 4, 2013

Brent Stephens

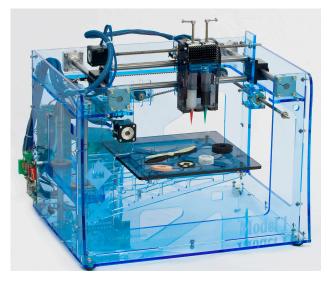
Parham Azimi

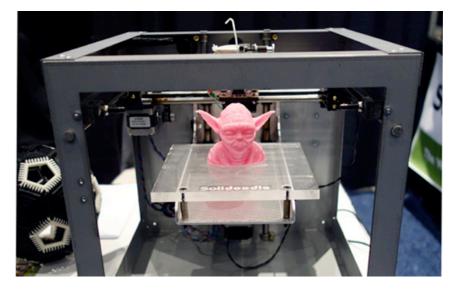
Zeineb El Orch

Built Environment Research @ III] 🗫 🎰 🆄 🛹

Advancing energy, environmental, and sustainability research within the built environment

Web: www.built-envi.com

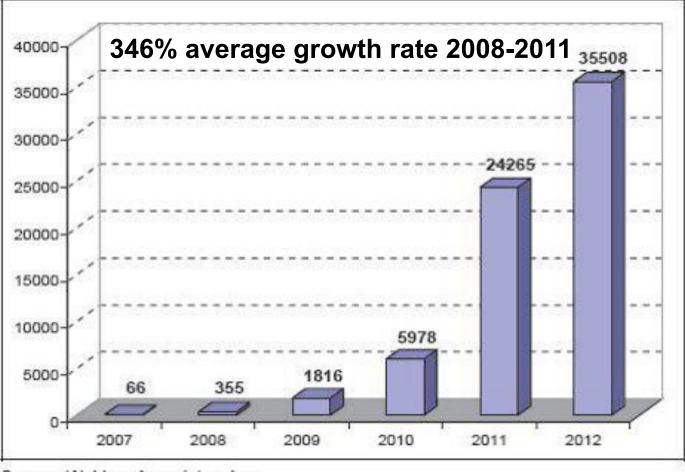

Twitter: <u>@built_envi</u> Email: <u>brent@iit.edu</u> Tiffanie Ramos Civil, Architectural and Environmental Engineering Illinois Institute of Technology, Chicago, IL


> Robert Zylstra Julie Friedman Steele The 3D Printer Experience, Chicago, IL

What is a 3D printer?

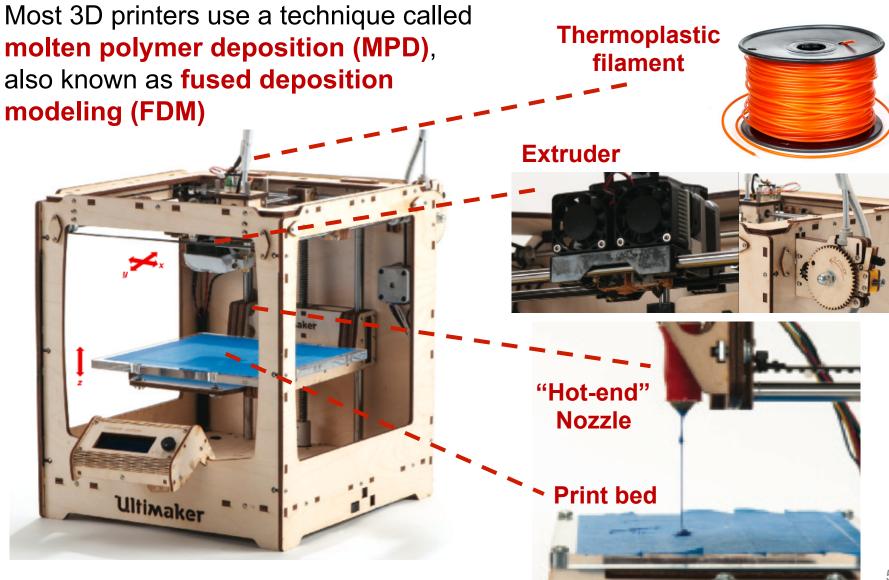
3D printing – or additive manufacturing – is a process of making a three-dimensional solid object from a digital model

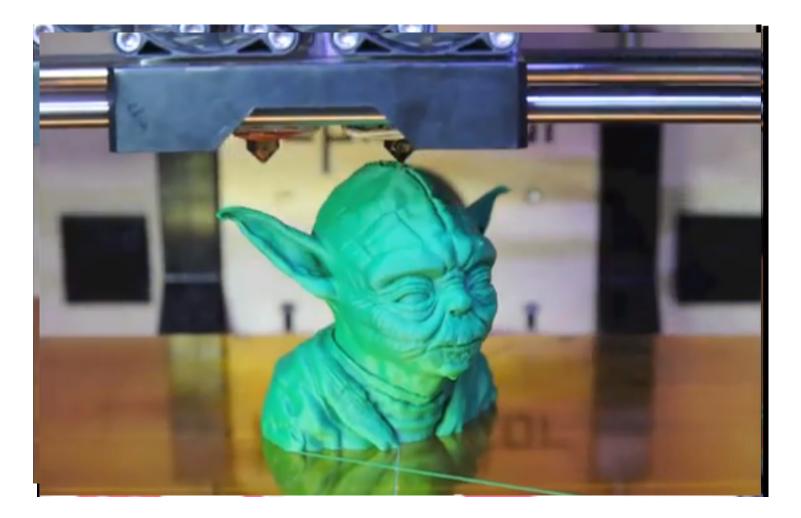
- Widely used in rapid prototyping and custom fabrication
- Commercial applications include industrial design, architecture, engineering, fashion, dental industries, biotech, food, and many others


Recent advances have greatly reduced costs and made 3D printers widely available for less than \$2,500 (or as little as \$500)

For as little as \$500...

You can make all this junk interesting stuff!


Personal 3D printer sales are rising steadily


Source: Wohlers Associates, Inc.

Approximately **70,000** personal 3D printers in circulation in 2012

Additive 3D printers: MPD/FDM

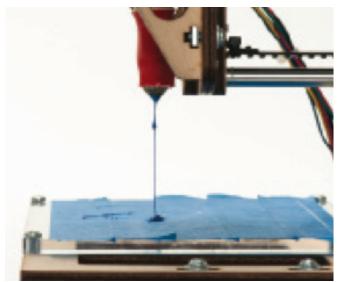
MPD/FDM 3D printer in action

Yoda head @ 0.1 mm layer height | <u>http://www.youtube.com/watch?v=8_vloWVgf0o</u>

Additive 3D printers: MPD/FDM

Thermoplastic filaments

Acrylonitrile butadiene styrene (ABS) Polylactic acid (PLA) Polyvinyl alcohol (PVA) Many others


Hot-end nozzle

0.2-0.8 mm diameter hole ~160-220°C for PLA ~190°C for PVA ~215-250°C for ABS

Print bed

<40°C for PLA ~110°C for ABS

Thermoplastic extrusion/deposition: Cause for concern?

 Previous work on large scale industrial thermoplastic processing showed that both gases and particles are emitted during operation

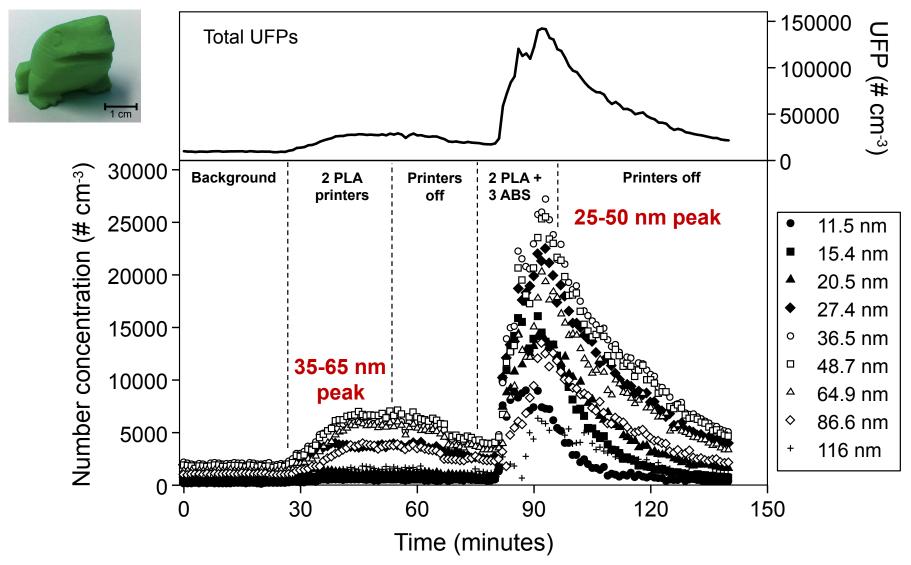
Rutkowski and Levin **1986** *Fire and Materials* 10:93-105; Contos et al. **1995** *J Air Waste Manag Assoc* 45:686-694; Unwin et al. **2013** *Ann Occ Hygiene* 57(3):399-406

- Exposure to decomposition products from ABS thermal processing has been shown to have toxic effects in rats and mice
 Zitting and Savolainen 1980 Archives of Toxicology 46:295-304; Schaper et al. 1994 Am Indust Hyg Assoc J 55:924-934
- Exposure to fumes from thermal decomposition of other plastics (e.g. PTFE) has been shown to be acutely toxic to mammals
 Oberdörster et al. 2005 Environ Health Persp 113:823-839
 - Ultrafine particles appear to be more toxic than gases

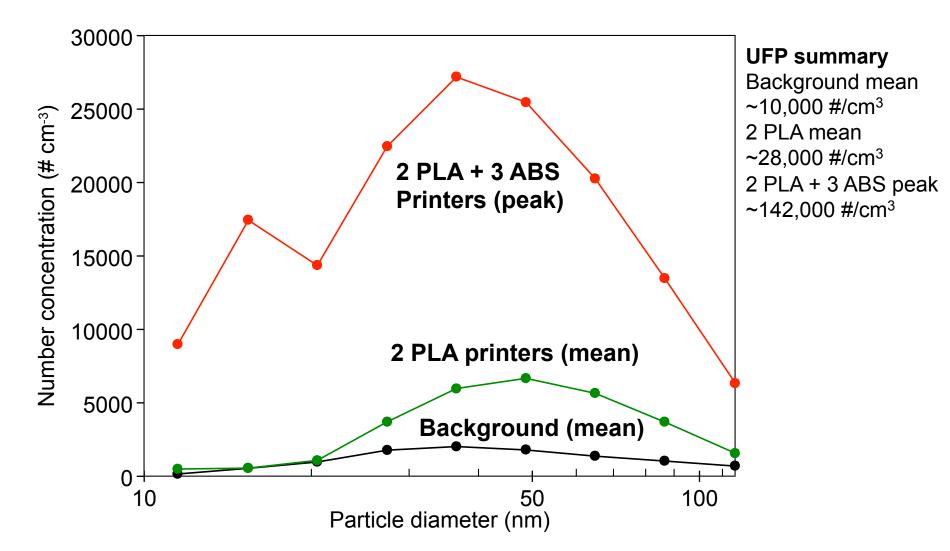
Oberdörster et al. **1995** *Inhal Toxicol* 7:111-124; Johnston et al. **2000** *Toxicol Applied Pharmacol* 168:208-215

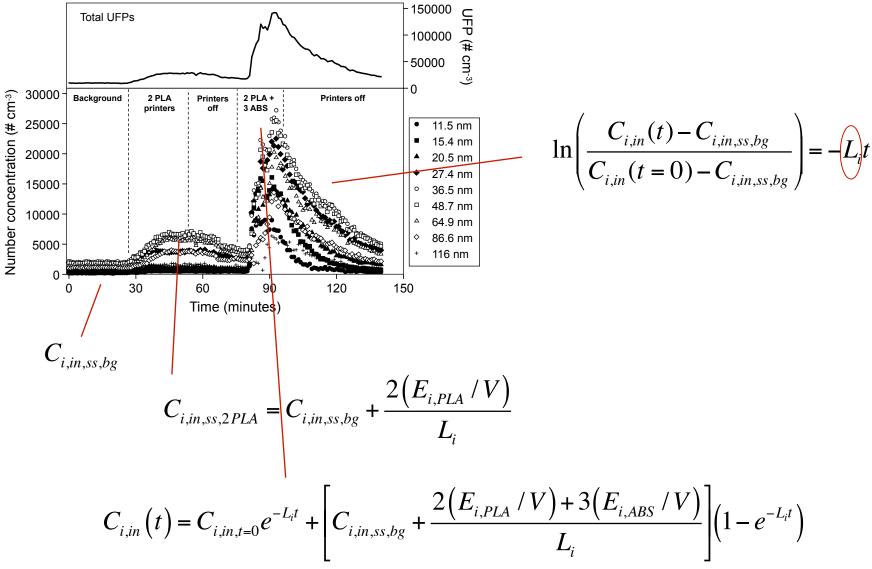
Our ad-hoc experiment

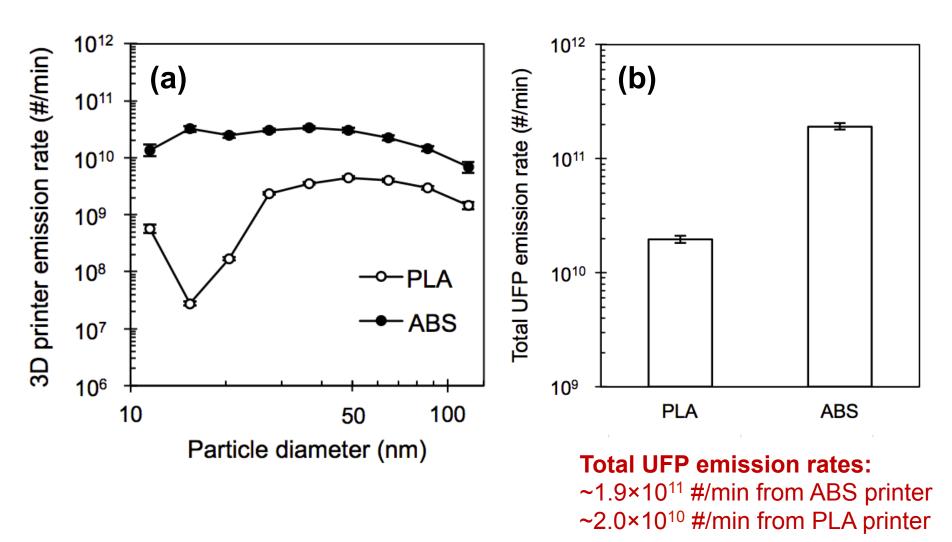
- Five 3D printers were tested
 - All 5 were the same popular commercial variety
 - All unenclosed designs



Stephens et al. 2013 Atmos Environ 79:334-339


- Two types of filaments at different operational conditions
 - 2 PLA @ 200°C nozzle T and 18°C bed T
 - 3 ABS @ 220°C nozzle T and 118° bed T
- Operating in a closed 45 m³ office environment
- Ultrafine particle concentrations measured w/ TSI NanoScan SMPS Tritscher et al. 2013 J Physics 429


Measured ultrafine particle concentrations


Mean and peak UFP size distributions

Estimating emission rates

Stephens et al. 2013 Atmos Environ 79:334-339

UFP emitting device Flat iron with steam Electric frying pan	Size range 20-1000 nm 10-400 nm	Emission rate (#/min) 6.0×10 ⁹ 1.1-2.7×10 ¹⁰	Reference Afshari et al. (2005) Buonnano et al. (2009)
PLA	10-100 nm	~2.0×10 ¹⁰	This study
Vacuum cleaner	20-1000 nm	3.5×10 ¹⁰	Afshari et al. (2005)
Scented candles	20-1000 nm	8.8×10 ¹⁰	Afshari et al. (2005)
Gas stove	20-1000 nm	1.3×10 ¹¹	Afshari et al. (2005)
ABS	10-100 nm	~1.9×10 ¹¹	This study
Cigarette	20-1000 nm	3.8×10 ¹¹	Afshari et al. (2005)
Electric stove	20-1000 nm	6.8×10 ¹¹	Afshari et al. (2005)
Frying meat	20-1000 nm	8.3×10 ¹¹	Afshari et al. (2005)
Radiator	20-1000 nm	8.9×10 ¹¹	Afshari et al. (2005)
Laser printers	6-3000 nm	4.3×10 ⁹ to 3.3×10 ¹²	He et al. (2010)
Cooking on a gas stove	10-400 nm	1.1-3.4×10 ¹²	Buonnano et al. (2009)

News coverage: Tell your own story

Are 3D printers harmful to your health?

Airborne particles from 3D printers could be as harmful to your health as cigarette smoke

JUL 25, 2013 03:34 PM ET // BY JESSE EMSPAK

HailOnline

The Telegraph 3D printers could cause strokes, researchers warn

FAST@MPANY Will A 3-D Printer Destroy Your Lungs?

3-D Printers Might Be Hazardous To Your Health

Is There Long-Term Health Risks to 3-D Printing? One Study Says 'Yes' StreetInsider.com *if you're not inside...you're outside*

Moving forward

- We could use more measurements
 - More printers
 - More filaments
 - Particles and gas-phase compounds
 - In realistic environments
- We could use inhalation toxicology studies
 Cell lines, mouse models, human subjects
- Or we can jump directly to control strategies
 Filtration, ventilation, enclosures

Potential for 3D printed 3D printer filtration systems

Photos courtesy Mike Moceri, The 3D Printer Experience

Acknowledgments

- Co-authors: Parham Azimi, Tiffanie Ramos, Zeineb El Orch, Julie Steele, and Bobby Zylstra
- The 3D Printer Experience, Chicago, IL

Questions/Comments

email: <u>brent@iit.edu</u> web: <u>www.built-envi.com</u>

Built Environment Research @ IIT

Advancing energy, environmental, and sustainability research within the built environment

