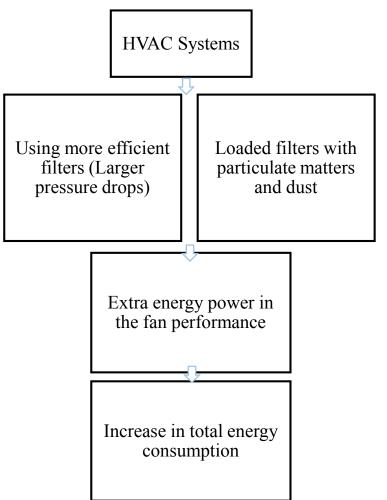
Modeling the Impacts of Filter Pressure on Energy Consumption

BERG Summer meeting

Torkan Fazli

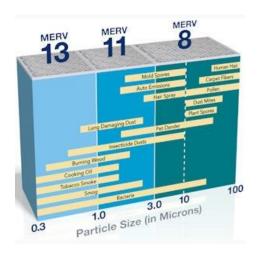
Rou Yi Yeap


The Built Environment Research Group

advancing energy, environmental, and sustainability research within the built environment at Illinois Institute of Technology

Introduction

Filters are used in heating, ventilating, and air-conditioning (HVAC) systems to protect the equipment and improve indoor air quality.


Filter Efficiency

Minimum Efficiency Reporting Value (MERV)

The most widely used measure of filter efficiency in the United States

1- Low-MERV filters (MERV <4) : remove 20% of of 3-10 μm particles

ASHRAE Standard 52.2

2- Mid-MERV filters (MERV 5-9) : remove
at least 20-85% of 3-10 µm particles and up to 50% of 1-3 µm particles

3- Higher-MERV filters (MERV 10-12) : remove 85-90% 3-10 μm particles and up to 50-80% of 1-3 μm particles

4- Very-high-MERV (MERV >13) : remove submicron particles and have minimum efficiencies of 95% for all particle sizes

HVAC Systems' Fans

Permanent Split- Capacitor (PSC)

90% of residential buildings Do not have flow control — Airflow rates change

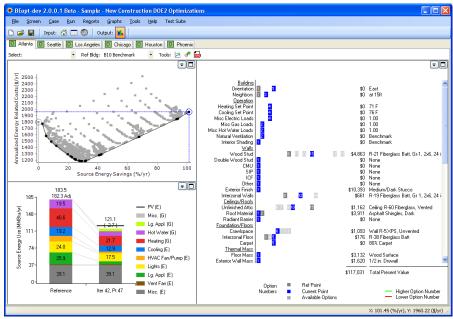
Electronically Commuted Motors (ECM)

Generally use in commercial buildings Have flow control — Maintain airflow rates

Determine the impacts of filters pressure on energy consumption of prototypical homes

- ✓ Find out the filter pressure drop and HVAC airflow rate according to different MERV rates
- ✓ Calculate fan power draw to determine which kind of filters consume the most energy
- ✓ Determine how a dirty filter effect amount of energy consumption

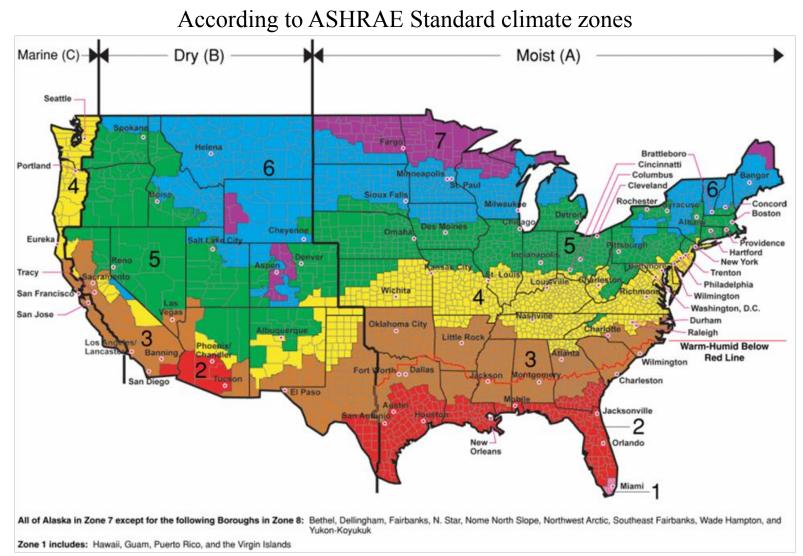
Methodology

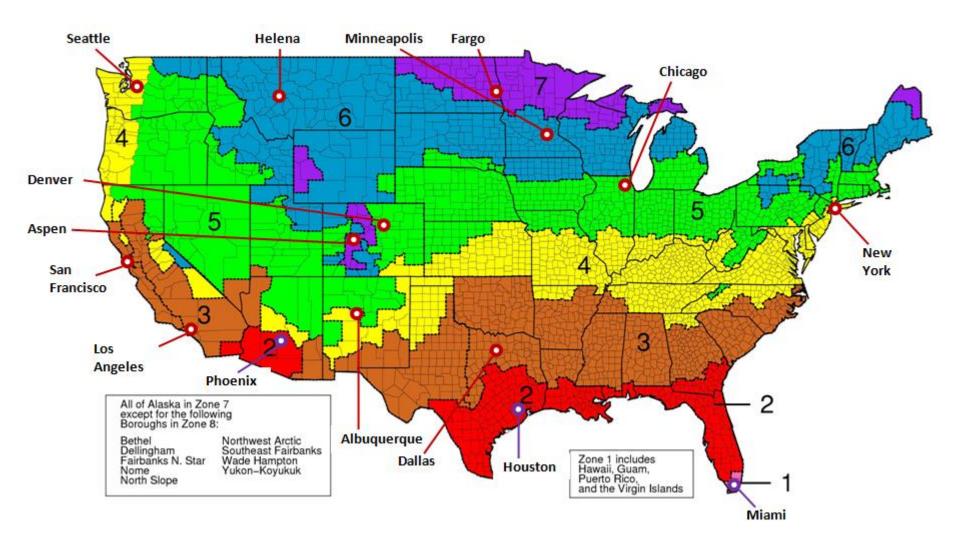

The Methodology of this project is done in several steps by defining:

- 1-15 cities from different climate zones
- 2- Required climate data
- 3- Home geometries
- 4- Building codes
- 5- Required HVAC system data

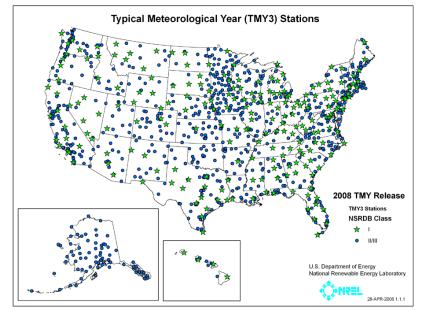
Afterwards energy simulations of whole case study buildings are determined by using BEopt software.

Energy Simulation


- BEopt (Building Energy Optimization) is a software that is capable of evaluating residential building designs and identify cost-optimal efficiency at various levels.
- We use EnergyPlus as a simulation engine.


http://beopt.nrel.gov/sites/beopt.nrel.gov/files/help/prntdoc/printed.htm

1-<u>15</u> cities from different climate zones


1-15 cities from different climate zones

2- Climate Data

National Solar Radiation Data Base

- ✓ Data files for the typical meteorological year (TMY)
- ✓ Data sets derived from the 1961-1990 and 1991-2005
- ✓ Data sets are hourly values of solar radiation and meteorological elements for a 1-year period
- ✓TMY3 data set contains data for 1020 locations

http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/usTMYmaps3medium.gif

3- General home geometries

According to US Census Bureau

- ✓ Floor Area: 2025 ft^2 (1800-2400 ft^2)
- ✓No. of stories: 1
- ✓No. of bedrooms: 3
- ✓ No. of bathrooms: 2
- ✓ Exterior Wall Materials: Vinyl, Light
- ✓ Type of foundation: Slab on ground

4- Building codes

- New energy efficient homes
- Existing homes
- Old homes

13

4- Building codes

✓ New energy efficient homes

According to International Energy Conservation Code 2009 in order to meet or exceed most minimum energy code requirement.

	Walls// Wood Stud	Walls//	Ceilings/ Roofs//	Foundation/ Floors//	Windows & Doors//
		Wall Sheathing	Unfinished Attic	Slab	Windows// U-value
1A-Miami	R-13 Fiberglass Batt, Gr-1	OSB	R-30 Fiberglass, Vented	Uninsulated	1.2
2A-Houston	R-13 Fiberglass Batt, Gr-1	OSB	R-30 Fiberglass, Vented	Uninsulated	0.65
2B-Phoenix	R-13 Fiberglass Batt, Gr-1	OSB	R-30 Fiberglass, Vented	Uninsulated	0.65
3A-Dallas	R-13 Fiberglass Batt, Gr-1	OSB	R-30 Fiberglass, Vented	Uninsulated	0.5
3B-Los Angeles	R-13 Fiberglass Batt, Gr-1	OSB	R-30 Fiberglass, Vented	Uninsulated	0.5
3C-San Francisco	R-13 Fiberglass Batt, Gr-1	OSB	R-30 Fiberglass, Vented	Uninsulated	0.5
4A-New York	R-13 Fiberglass Batt, Gr-1	OSB	R-38 Fiberglass, Vented	2ft R10 Exterior XPS	0.35
4B-Albuquerque	R-13 Fiberglass Batt, Gr-1	OSB	R-38 Fiberglass, Vented	2ft R10 Exterior XPS	0.35
4C-Seattle	R-13 Fiberglass Batt, Gr-1	R-5 XPS	R-38 Fiberglass, Vented	2ft R10 Exterior XPS	0.35
5A-Chicago	R-13 Fiberglass Batt, Gr-1	R-5 XPS	R-38 Fiberglass, Vented	2ft R10 Exterior XPS	0.35
5B-Denver	R-13 Fiberglass Batt, Gr-1	R-5 XPS	R-38 Fiberglass, Vented	2ft R10 Exterior XPS	0.35
6A-Minneapolis	R-13 Fiberglass Batt, Gr-1	R-5 XPS	R-49 Fiberglass, Vented	4ft R10 Exterior XPS	0.35
6B-Helena	R-13 Fiberglass Batt, Gr-1	R-5 XPS	R-49 Fiberglass, Vented	4ft R10 Exterior XPS	0.35
7A-Fargo	R-21 Fiberglass Batt, Gr-1	OSB	R-49 Fiberglass, Vented	4ft R10 Exterior XPS	0.35
7B-Aspen	R-21 Fiberglass Batt, Gr-1	OSB	R-49 Fiberglass, Vented	4ft R10 Exterior XPS	0.35

New Energy Efficiency Home

4- Building Codes - Cont'd

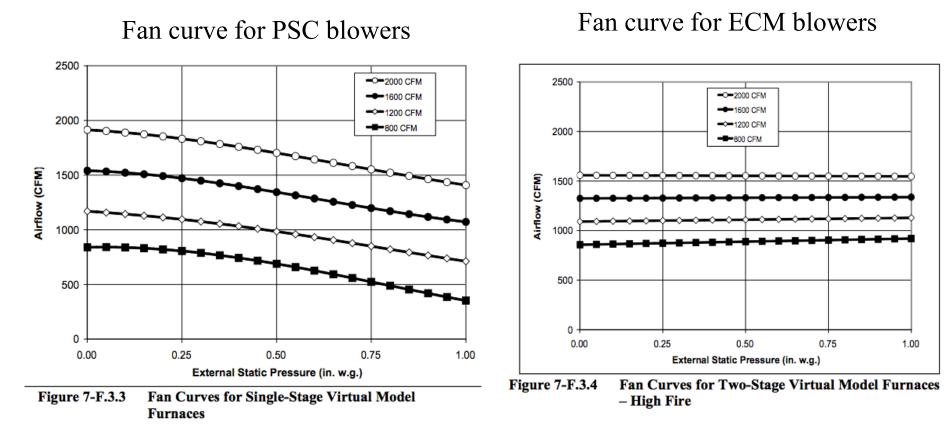
Windows & Doors// Airflow// Space Conditioning// Space Conditioning// Space Conditioning// Airflow// Windows// SHGC **Central Air Conditioner** Air Leakage Mechanical Ventilation Ducts Furnace 7.5% Leakage, R-8 1A-Miami 0.3 3ACH50 ERV, 72% SEER 16 Gas, 98% AFUE 0.3 3ACH50 SEER 16 7.5% Leakage, R-8 2A-Houston ERV, 72% Gas, 98% AFUE 2B-Phoenix ERV, 72% Gas, 98% AFUE 7.5% Leakage, R-8 0.3 3ACH50 SEER 16 SEER 16 7.5% Leakage, R-8 3A-Dallas 0.3 3ACH50 Supply Gas, 98% AFUE 3B-Los Angeles ERV, 72% Gas, 98% AFUE 7.5% Leakage, R-8 0.3 3ACH50 SEER 16 7.5% Leakage, R-8 0.3 3ACH50 SEER 16 3C-San Francisco Supply Gas, 98% AFUE 4A-New York Supply SEER 16 Gas, 98% AFUE 7.5% Leakage, R-8 0.3 3ACH50 4B-Albuguergue 0.3 3ACH50 Supply Gas, 98% AFUE 7.5% Leakage, R-8 SEER 16 0.3 3ACH50 Gas, 98% AFUE 7.5% Leakage, R-8 4C-Seattle Supply SEER 16 5A-Chicago 0.3 3ACH50 Supply SEER 16 Gas, 98% AFUE 7.5% Leakage, R-8 Supply 7.5% Leakage, R-8 5B-Denver 0.3 3ACH50 SEER 16 Gas, 98% AFUE 6A-Minneapolis Supply SEER 16 7.5% Leakage, R-8 0.3 3ACH50 Gas, 98% AFUE 7.5% Leakage, R-8 6B-Helena 0.3 3ACH50 Supply SEER 16 Gas, 98% AFUE 7A-Fargo 0.3 3ACH50 ERV, 72% SEER 16 Gas, 98% AFUE 7.5% Leakage, R-8 7B-Aspen 0.3 3ACH50 ERV, 72% SEER 16 Gas, 98% AFUE 7.5% Leakage, R-8

New Energy Efficiency Home

5- Required HVAC system data

$$W_{fan} = \frac{\Delta P_{system} \times Q_{fan}}{\eta_{fan} \times \eta_{motor}}$$

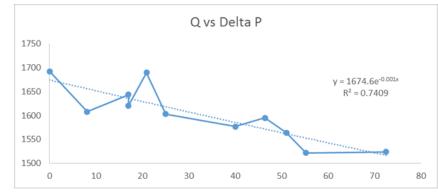
 W_{fan} : Fan power draw (W)

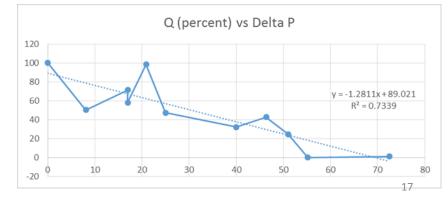

 ΔP_{system} : External system pressure (Pa)

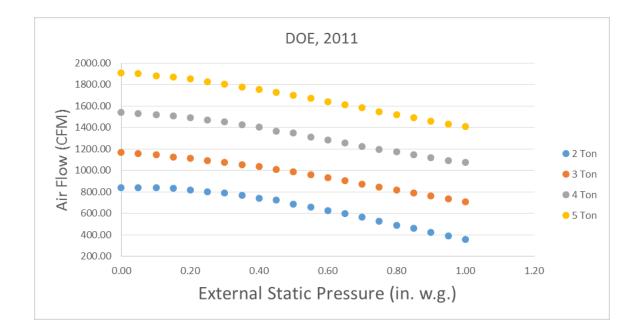
 Q_{fan} : Air flow rate (m^3/h)

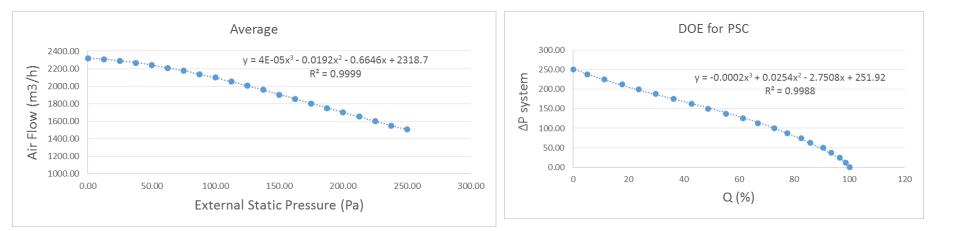
 η_{fan} : efficiency of the fan

 η_{motor} : efficiency of the fan motor

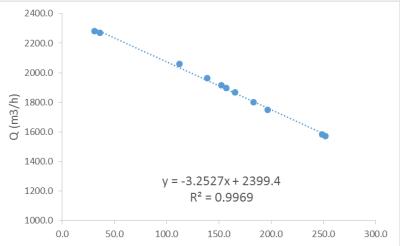

Department of Energy Document

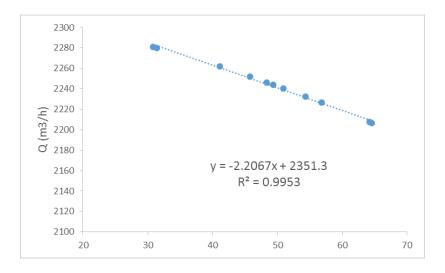



DOE, 2011


Finding the relation between ΔP_{filter} and ΔP_{system} (1st way)

MERV	Stephens et	t al, 2010	Stephens & Siegel, 2012 Stephens & Siegel, 2012		Stephens &	Stephens & Siegel, 2013	
Rate	Δ <i>P_{filter}</i> (Pa)	$Q\left(\frac{m^3}{h}\right)$	Δ <i>P_{filter}</i> (Pa)	$Q\left(\frac{m^3}{h}\right)$	ΔP_{filter} (Pa)	$Q\left(\frac{m^3}{h}\right)$	
No Filter	0	-	0	1673	0	1712	
2	-	-	-	-	-	-	
3	-	-	-	-	-	-	
<4	20.9	1690	-	-	-	-	
4	-	-	-	-	17	1644	
<5	-	-	8.1	1608	-	-	
6	-	-	-	-	51	1564	
7	-	-	55.2	1522	-	-	
8	46.35	1595	-	-	-	-	
10	-	-	-	-	17	1621	
11	82.25	1540	89.2	1460	46	1572	
13	_	-	-	-	40	1577	
16	-	-	_	-	25	1603	





	ΔP	Q	Q %	ESP (DOE)	Q (DOE)
No Filter	0	1692.5	100.0	30.8	2281.1
MERV<5	8.1	1608	50.4	152.1	1914.1
MERV 4	17	1644	71.6	111.9	2060.1
MERV 10	17	1621	58.1	138.7	1964.0
MERV<4	20.9	1690	98.5	36.1	2271.5
MERV 16	25	1603	47.5	157.1	1895.4
MERV 13	40	1577	32.3	182.9	1799.6
MERV 8	46.35	1595	42.8	165.0	1866.0
MERV 6	51	1564	24.6	196.6	1750.0
MERV 7	55.2	1522	0.0	251.9	1572.3
MERV 11	72.48	1524	1.2	248.7	1581.1

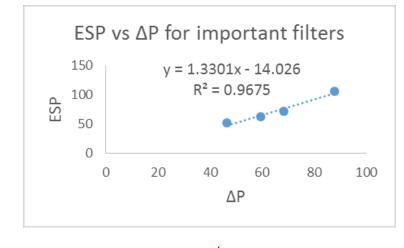
Changing the minimum value for airflow rate to 0

	ΔP	Q	Q %	ESP (DOE)	Q (DOE)
No Filter	0	1692.5	100	31	2281
MERV<5	8.1	1608	95	48	2246
MERV 4	17	1644	97	41	2262
MERV 10	17	1621	96	46	2252
MERV<4	20.9	1690	100	31	2280
MERV 16	25	1603	95	49	2244
MERV 13	40	1577	93	54	2232
MERV 8	46.35	1595	94	51	2240
MERV 6	51	1564	92	57	2226
MERV 7	55.2	1522	90	65	2207
MERV 11	72.48	1524	90	64	2208
Full Loaded		0	0		

Finding the relation between ΔP_{filter} and ΔP_{system} (2nd way)

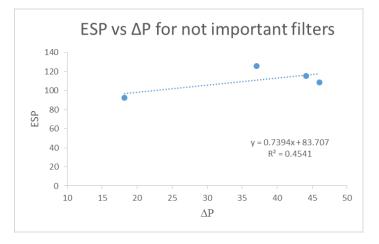
Using collected data for 17 sites and 4 different MERV rates from Stephens, et al, 2010, ASHRAE research project.

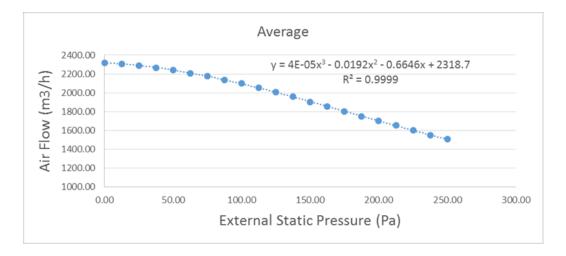
In 8 sites filters play an important role

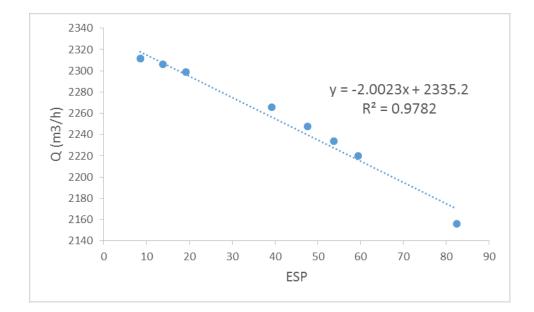

	ΔP	Filter Pressure Drop Fraction of Return Plenum Pressure Drop	ESP
	26.8	99	27.1
Site 11	27.6	96	28.8
MERV 2	33.6	100	33.6
	34.5	93	37.1
	49	98	50.0
	50.7	97	52.3
Site 11	48	86	55.8
0.00 ==	55.5	100	55.5
MERV 6	53.1	100	53.1
	67	100	67.0
	78.3	100	78.3
	50.1	100	50.1
Site 11	48	100	48.0
MERV 11	54	100	54.0
	63.5	100	63.5

	ΔP	Filter Pressure Drop Fraction of Return Plenum Pressure Drop	ESP	
	15.7	15	104.6667	
Site 10 MERV 2	15.6	15	104	
SILE TO WERV 2	16	14	114.2857	
	36.6	29	126.2069	
	36.8	29	126.8966	
Site 10 MERV 6	37.8	30	126	
	37.2	30	124	
	ΔP Drop F Return Presso 15.7 1 15.6 1 36.6 3 36.8 3 37.8 3 37.3 3 37.3 3 37.5 40.2 40.1 41.7	30	124.3333	
	37.3	30	124.3333	
Site 10 MERV 11	36.5	29	125.8621	
SILE IU WERV II	37.5	30	125	Î
	40.2	32	125.625	
	40.1	31	129.3548	
Site 10 MERV 7	41.7	31	134.5161	1
	42.6	33	129.0909	1

Average values for filter pressure and external static pressure


For the sites that Filter is important


	ΔP	%	ESP
MERV 2	46.54286	90.8	51.80373
MERV 6	59.32222	96.03704	62.36609
MERV 7	87.825	80.75	106.0287
MERV 11	68.39388	94.5102	72.29952


For the sites that filter is not important

	ΔP	%	ESP
MERV 2	18.2	20.28571	92.51662
MERV 6	37.1	29.5	125.7759
MERV 7	44.1125	39.125	115.3813
MERV 11	46.075	43.41667	108.7233

	ΔP	ESP	Q (DOE)
No Filter	0	-14.03	2324.13
MERV<5	8.1	-3.25	2320.66
MERV 4	17	8.59	2311.60
MERV 10	17	8.59	2311.60
MERV<4	20.9	13.77	2306.01
MERV 16	25	19.23	2299.11
MERV 13	40	39.18	2265.60
MERV 8	46.35	47.62	2247.82
MERV 6	51	53.81	2233.58
MERV 7	55.2	59.40	2219.87
MERV 11	72.48	82.38	2156.01

Thank You!

Questions?