CAE 463/524 Building Enclosure Design Fall 2013

Lecture 6: September 25, 2013 Moisture flows in building enclosures

Built Environment Research @ III] 🐋 🕣 M 🕂

Advancing energy, environmental, and sustainability research within the built environment

www.built-envi.com

Twitter: <u>@built_envi</u>

Dr. Brent Stephens, Ph.D. Civil, Architectural and Environmental Engineering Illinois Institute of Technology <u>brent@iit.edu</u>

Last time

- Finished complex conduction in enclosures
 THERM 2-D modeling
 - Below grade heat transfer models
 - Thermal storage / thermal mass

Today's objectives

- Moisture flows in building enclosures
- HW 2 (THERM) due
- Finish assigning campus project teams

Campus project

- Alumni Hall
 - Akram, Honnie, and Ying
- Crown Hall
 - Juneyoung, Sunyoung, Camila
- Engineering 1
 - Firaz, Gilberto, Jay
- ???
 - Alex, Ausrine, Liz
 - Dan?

Final project guidelines

- Your final project expectations and guidelines are up on BB today
- It is an individual project where you will research high performance building enclosures
 - Focus on peer-reviewed literature
 - 8 page conference paper
 - Focus on heat, air and moisture principles
 - Must be quantitative in addition to qualitative explanations
 - Also an oral presentation
- Deadlines:
 - Project topic justification: Email me by October 9
 - Half of our presentations will be on November 20; the other half on December 4
 - Report due December 4

Final project ideas

List of example technologies

- Green roofs
- Green walls
- Double skin facades
- Building integrated photovoltaics
- Electrochromic windows
- Phase change materials
- Bio-based insulation materials (mushrooms, straw)
- Structural insulated panels
- Cool roofs
- Whatever you come up with!

Scheduling

Week	Date	Lecture Topics	Reading	Assignment Due
1	Aug 21	Introduction to building enclosure design	Straube Ch. 2-3	
2	Aug 28	Building science review		
3	Sep 4	Heat transfer in building enclosures 1. Energy balances and solar radiation	Straube Ch. 4-5	
4	Sep 11	Heat transfer in building enclosures (cont.)2. Complex conduction	Lstiburek 2012	HW1
5	Sep 18	Finish complex conduction		
6	Sep 25	Moisture flows in building enclosures Moisture problems and prevention: Applications	Straube Ch. 6; Kazmierczak 2010; Karagiozis et al. 2010; Straube Ch. 9-10 Lstiburek 2004	HW2
7	Oct 2	No class - Away at conference (AAAR) Use this time for campus building assessments	Selkowitz 2011; Straube 2008	
8	Oct 9	Air infiltration and natural ventilation through enclosures 1. Field performance testing	Straube Ch. 7; Younes et al. 2012	HW3
9	Oct 16	Applications in enclosure design: Codes, standards, structural requirements, and materials 2. Away at conference (ASHRAE IAQ)		
10	Oct 23	Energy simulation and enclosure design 3. Introduction to energy modeling software	Asadi et al., 2012; Asan 2006; Medina 2000; TenWolde 1997	Take-home exam
11	Oct 30	Energy simulation and enclosure design (cont.)		HW4
12	Nov 6	Glazing, shading, and lighting		Campus projects
13	Nov 13	Impacts of enclosures on IAQ	Liu and Nazaroff 2001; Stephens and Siegel 2012	
14	Nov 20	Final project presentations part 1	_	
15	Nov 27	No class - Thanksgiving break		
Final	Dec 4	Final project presentations part 2		Final report

MOISTURE FLOWS IN ENCLOSURES

Water vapor transport

- Moisture in air is one of the most important sources of wetting in buildings
 - Need to know to how to design and construct buildings that are safe from damage caused by water vapor and liquid water
 - Need to understand physics of water vapor and its:
 - Transport by diffusion and air movement (convection)
 - Deposition by condensation
 - Removal by evaporation
- Most of notes today come from our textbook
 - Some also come from Moisture Control Handbook: Princples and Practices for Residential and Small Commercial Buildings, Listiburek and Carmody, Wiley, 1996, ISBN 0471318639.
 - Reduced version of this text is available as a DOE report:
 - <u>http://www.ornl.gov/sci/roofs+walls/facts/moisture/Moisturehandbook2.pdf</u>

Moisture management basics

- Moisture is involved in almost all performance problems or deterioration process that affect building enclosures
 - Leakage of water into the building
 - Freeze-thaw deterioration of concrete, stone, or masonry
 - Corrosion of metal components
 - Biological growth
 - Occupant health, structural integrity, and appearance
 - Chemical deterioration/dissolution of materials
 - Volume changes
 - Structural failure, cracking, degradation of appearance
 - Discoloration
 - Staining, dusting, irregular wetting

Moisture management basics

- For a moisture-related problem to occur, at least four conditions must be met
 - A moisture **source** must be available
 - There must be a **route** for moisture to travel
 - Three must be a **driving force** to cause moisture movement
 - The material(s) involved must be **susceptible** to moisture damage
- Address at least one of these can usually solve (or avoid) most problems
- More on moisture management later
 - For now, we will identify moisture problems and causes
 - Then learn the fundamentals/physics of moisture transport

Types of moisture failure

We use the term "failure" typically to include some level of (a) material deformation or

(b) degradation of physical performance that stem physical changes, chemical processes, and/or

biological processes

Moisture can cause several types of failure:

- Structural failures from rot damage and freeze-thaw cycles
- Increased heat loss caused by moisture content in materials and airflow through moisture enhanced gaps
- Emission of volatile organic compounds (VOCs)
- Mold growth
- Insect problems

Examples of moisture problems

Freeze-thaw damage

Wood deformation: Shrinking, swelling

Dust deposition

Efflorescence

Moisture mapping

Condensation near an AC unit

 A surface moisture meter was used to map out the condensation pattern on a wall

 When the wall paper was pulled back we see the mold growth that matches the condensation pattern

Mold growth requirements

- Typical 20-25°C room temperatures are often ideal for mold growth
 - Particularly if humidity is high (e.g., > 80%)

Moisture failure criteria

- Total water content of assembly
 - Does it increase over time?
- Moisture content in each component
 - Particularly critical wood components (should be less than 20%)
- Condensation potential
 - Surface temperatures lower than indoor air dewpoint?
 - If so, any air leak could cause condensation
 - No good guidelines on critical values
- Potential for mold growth
 - ASHRAE Standard 160: 30 day running average surface RH>80% when temperature is between ~40°F and ~100°F

Why wasn't moisture a problem before?

- In the past, enclosure materials could store a lot more moisture in their denser, more porous construction and thus dry slowly
 - e.g. brick and stone
- Enclosures used to lack moisture barrier
 - Few materials were good vapor barriers
 - So any moisture that did get to an internal wall surface could dry by diffusion and air motion to either the inside or outside
- Larger air leaks in older, leaker enclosures also allowed moisture in internal surfaces to dry to either the inside or the outside

Why moisture is a problem now

- Besides basic changes in wall construction from masonry to stud walls, there have been other changes in construction as well:
- Construction is more airtight
 - So any moisture that does get in cannot dry as easily
- Construction includes more materials that act as vapor barriers or at least have high vapor resistance
 - If vapor barrier is in the wrong spot it can cause condensation and limit drying
 - Latex paints
 - Foil coated insulation
 - Insulation in encapsulated in polyethelyne bags

- Water leakage
- Water penetration through joints and seams
- Convection of moist air through cracks (and condensation)
- Diffusion through structure
- Rising from damp ground

Moisture enters a building in two forms:

- Liquid
- Vapor

We can break transport into three main categories:

- Condensed water infiltration (bulk liquid)
 - Infiltration of water in liquid form
- Moist air infiltration
 - Infiltration of water vapor in air that leaks into building
- Vapor diffusion
 - Infiltration of water vapor from high to low vapor pressure

Controlling Mode 1 (bulk liquid) differs from controlling Modes 2 and 3 (which involved water vapor)

We will focus on water vapor first and bulk liquid water later

Water vapor transport

- Water vapor moves through the building enclosure in two primary modes
 - Diffusion
 - Bulk convection
- Combined transport of mass by diffusion and convection is called *advection*

Water vapor transport: **Diffusion**

- Diffusion, like conduction, is mass/energy transport through a solid material, driven by a gradient
- Fick's Law:
 - Mass flow of water vapor dm_v/dt under a gradient in vapor pressure ∇p_w

$$\frac{dm_{v}}{dt} = -D\nabla p_{w}$$

where

- D = diffusivity
- p_w = vapor pressure (concentration) ∇ = divergent operator ($\partial/\partial x$, $\partial/\partial y$, $\partial/\partial z$)

 In one dimension, the difference in vapor pressure, dp,, over a thickness x drives the rate of water vapor mass flow:

$$\frac{dm_{v}}{dt} = -\mu A \frac{dp_{w}}{dx}$$

where

 $\frac{dm_{v}}{dt} = \text{rate of water vapor mass flow [ng/s]}$ $A = \text{area perpendicular to flow [m^{2}]}$ $\mu = \text{average vapor permeability [ng/(m Pa s)]}$ $\frac{dp_{w}}{dx} = \text{vapor pressure gradient [Pa/m]}$

 Assuming that vapor permeance (µ) does NOT vary with T/RH (it actually does), Fick's law can be written as:

$$\dot{M}_{v} = \frac{\mu}{L} A (p_{w,1} - p_{w,2})$$

where

$$\dot{M}_{v}$$
 = rate of water vapor mass flow [ng/s]
 A = area perpendicular to flow [m²]
 μ = average vapor permeability [ng/(m Pa s)]
 L = length of material [m]
 $p_{w,i}$ = vapor pressure on either side of material [Pa]

$$\dot{m}_{v} = \frac{Q_{v}}{A} = \frac{\mu}{L} (p_{w,1} - p_{w,2})$$

 \dot{m}_{v} = rate of water vapor mass flow per unit area [ng/s per m²]

• We can rearrange terms just like in heat transfer:

$$\dot{m}_{v} = \frac{\dot{m}_{v}}{A} = \frac{\mu}{L} \left(p_{w,1} - p_{w,2} \right) = M \left(p_{w,1} - p_{w,2} \right) = \frac{1}{R_{v}} \left(p_{w,1} - p_{w,2} \right)$$
$$M = \frac{\mu}{L} \quad \text{and} \quad R_{v} = \frac{1}{M}$$
$$M = \text{vapor permeance [ng/(s m^{2} Pa)]}$$
$$R_{v} = \text{vapor resistance [(s m^{2} Pa)/ng]}$$

- *M* is analogous to *U*
- R_v is analogous to R

Water vapor diffusion: look familiar?

 Fick's law for diffusive vapor flow is the same as Fourier's Law for conductive heat flow

	Heat		Vapor		
Driving Potential	Temperature	t,T	Vapor Pressure	Pw	-
Measures	Conductivity	k, λ	Permeability	μ	
	Conductance	С	Permeance	М	
	Overall Transmittance	U	Overall Vapor Transmittance	V	
	Resistance	R	Resistance	Rv	l prefer usina:
Flow	Heat flow	Q	Vapor Flow	Qv	M
	Heat flux	q	Vapor flux	qv	ṁ
Single Layer	$\frac{\lambda}{l} \cdot \Delta t$	q	$\frac{\mu}{l} \cdot \Delta P$	i	
	$= \mathbf{C} \cdot \Delta \mathbf{t}$		$= \mathbf{M} \cdot \Delta \mathbf{P}$		
	$= \Delta t / R$		$= \Delta P / R_V$		
Multi-Layer	$U\cdot \Delta t$		$V\cdot \Delta P$		

Table 6.1: Comparison of conductive heat flow and diffusive vapor flow

Water vapor transport: Bulk convection

- The bulk convective flow of air can transport significant quantities of water vapor with it
 - Simple function of the flow rate of air
 - Remember the humidity ratio, $W = m_v/m_a$
 - If the rate of air movement is known:

$$\frac{dm_{v}}{dt} = \frac{dm_{a}}{dt}W$$

where

$$\frac{dm_{v}}{dt} = \text{rate of water vapor mass flow } [kg_{v}/s]$$
$$\frac{dm_{a}}{dt} = \text{rate of air mass flow } [kg_{a}/s]$$
$$W = \text{humidity ratio } [kg_{v}/kg_{a}]$$

Water vapor transport: convection

• Mass flow rate of convective water vapor movement

$$\dot{M}_{v,conv} = \rho_{air} \dot{V}_{air} W$$

- Again, similar to bulk convective heat transfer
- Mass flow rate of water vapor equals mass flow rate of air times humidity ratio

Key terms reference

Water vapor diffusion: movement under a pressure gradient of water vapor

Term	Symbol	Definition	SI Units	IP Units
Vapor flow	M _v	Time rate at which water vapor moves	[ng/s]	[grains/hr]
Vapor permeability	μ	Rate of vapor flow through a unit thickness of material under a unit vapor pressure difference	[ng/(s m Pa)]	perm-inch [grain/(hr in Hg in)]
Vapor permeance	Μ	Permeability of a material for a given thickness	[ng/(s m² Pa)]	perm [grains/(hr ft² inHg)]
Vapor resistance	R _v	Resistance of a material for a given thickness	[(s m² Pa)/ng]	rep = 1/perm [(hr ft ² inHg)/grain]

A note on the unit **perm**:

Materials in the US (IP units) are referred to by **perm** values 1 perm = 1 grain/(hr ft² inHg) \rightarrow similar to a unit R value 1 perm = 57.2 ng/(s m² Pa)

Material moisture resistance properties

Material	Thickness, mm	Permeance, ng/(s·m ² ·Pa)	Resistance ^h , (TPa·m ² ·s)/kg	Permeability, ng/(s·m·Pa)	Resistance/m ^h , (TPa·m·s)/kg	
Construction Materials						
Concrete (1:2:4 mix)				4.7	0.21	
Brick masonry	100	46 ^f	0.022			
Concrete block (cored, limestone aggregate)	200	137 ^f	0.0073			
Tile masonry, glazed	100	6.9 ^f	0.14			
Asbestos cement board	3	220-458 ^d	0.0017-0.0035			
With oil-base finishes		17-29 ^d	0.0035-0.052			
Plaster on metal lath	19	860 ^f	0.0012			
Plaster on wood lath		630 ^e	0.0016			
Plaster on plain gypsum lath (with studs)		1140 ^f	0.00088			
Gypsum wall board (plain)	9.5	2860 ^f	0.00035			
Gypsum sheathing (asphalt impregnated)	13		29 ^f	0.038		
Structural insulating board (sheathing quality)				29-73 ^f	0.038-0.014	
Structural insulating board (interior, uncoated)	13	2860-5150 ^f	0.00035-0.00019			
Hardboard (standard)	3.2	630 ^f	0.0016			
Hardboard (tempered)	3.2	290 ^f	0.0034			
Built-up roofing (hot mopped)		0.0	00			
Wood, sugar pine				0.58-7.8 ^{f,b}	172.0-131	
Plywood (douglas fir, exterior glue)	6.4	40 ^f	0.025			
Plywood (douglas fir, interior glue)	6.4	109 ^f	0.0092			
Acrylic, glass fiber reinforced sheet	1.4	6.9 ^f *	0.145			
Polyester, glass fiber reinforced sheet	1.2	2.9 ^f	0.345			
	L	М	R _v	μ		
			(strange units)	0.0	

Table 7A Typical Water Vapor Permeance and Permeability Values for Common Building Materials^a

Material moisture resistance properties

Table 7A Typical Water Vapor Permeance and Permeability Values for Common Building Materials^a

Material	Thickness, mm	Permeance, ng/(s·m²·Pa)	Resistance ^h , (TPa·m ² ·s)/kg	Permeability, ng/(s·m·Pa)	Resistance/m ^h , (TPa·m·s)/kg
Thermal Insulations					
Air (still)				174 ^f	0.0057
Cellular glass				0.0 ^d *	00
Corkboard				3.0-3.8 ^d	0.33-0.26
				14 ^e	0.076
Mineral wool (unprotected)				245 ^e	0.0059
Expanded polyurethane $[R = 1.94 \text{ W}/(\text{m}^2 \cdot \text{K})]$ board stock				0.58-2.3 ^d	1.72-0.43
Expanded polystyrene—extruded				1.7 ^d	0.57
Expanded polystyrene—bead				2.9-8.4 ^d *	0.34-0.12
Phenolic foam (covering removed)				38	0.026
Unicellular synthetic flexible rubber foam				0.029 ^d	34-4.61
Plastic and Metal Foils and Films ^c					
Aluminum foil	0.025	0.0 ^d	00		
Aluminum foil	0.009	2.9 ^d	0.345		
Polyethylene	0.051	9.1 ^d	0.110		2133
Polyethylene	0.1	4.6 ^d	0.217		2133
Polyethylene	0.15	3.4 ^d *	0.294		2133
Polyethylene	0.2	2.3 ^d *	0.435		2133
Polyethylene	0.25	1.7 ^d	0.588		2133
Polyvinylchloride, unplasticized	0.051	39 ^d *	0.026		
Polyvinylchloride, plasticized	0.1	46-80 ^d *	0.032		
Polyester	0.025	42 ^d	0.042		
Polyester	0.09	13 ^d	0.075		
Polvester	0.19	4.6 ^d	0.22		
Cellulose acetate	0.25	263 ^d	0.0035		
Cellulose acetate	3.2	18 ^d	0.054		
	L	Μ	R _v	μ	31
			(strange units)	

Materials: Vapor barriers and vapor retarders

- Vapor retarders slow the rate of vapor diffusion
 - But does not prevent it
- General rules for vapor permeance are as follows:

Туре	Perms (IP units) [grains/(hr ft² inHg)]	SI units [ng/(s m² Pa)]	Example
Class I vapor retarder Vapor barrier Vapor impermeable	0.1 or less	5.7	Foil Polyethylene
Class II vapor retarder Vapor semi-impermeable	0.1-1	5.7-57	Brick XPS
Class III vapor retarder Vapor semi-permeable	1-10	57-570	Poly-iso EPS
Vapor permeable NOT a vapor retarder	10+	570+	Gypsum board

Materials: Vapor barriers and vapor retarders

- Vapor retarders also need to satisfy some other requirements:
 - Mechanically strong
 - Adhesive
 - Elastic
 - Thermally stable
 - Fire resistant
 - Resistant to UV degradation
 - Easily applied and installed
- Very small punctures can lead to moist air leakage
 - Significantly increases overall permeance

Calculating steady state 1-D vapor flow

- Calculating vapor flow follows same general principles as calculating heat flow by conduction
- However, results of calculations tend to be much less accurate, for several reasons:
 - Values for vapor permeability (μ) are not always accurate
 - Also vary widely with moisture content and temperature
 - Variations of an order of magnitude are common for some materials
 - Extrapolating for different thicknesses also introduces inaccuracy
 - Moisture storage capacity for most building materials is large
 - Steady state conditions almost never occur in practice
 - Evaporation and desorption act as moisture sources and sinks
- Still important to understand vapor diffusion calculations
 - Helps identify potential condensation problems and understand how design decisions can impact potential moisture problems

Calculating steady state 1-D vapor flow

- Example problem: A 2 m wide, 3 m high, and 50 mm thick sheet of extruded polystyrene insulation material stands between indoor conditions of 24°C and 50% RH and exterior conditions of 35°C and 40% RH
- Calculate the following:
 - Vapor flow rate, M_v
 - Vapor flux, \dot{m}_v
 - Vapor permeance, M
 - Vapor resistance, R_v

Example: Calculating steady state 1-D vapor flow

• First get p_{ws} for inside and outside conditions

Temp.,	Absolute	Specific Volume, m ³ /kg _w		Specific Enthalpy, kJ/kg _w			Specific Entropy, $kJ/(kg_w \cdot K)$			Temp.,	
°C	Pressure	Sat. Liquid	Evap.	Sat. Vapor	Sat. Liquid	Evap.	Sat. Vapor	Sat. Liquid	Evap.	Sat. Vapor	°C
t	p _{ws} , kPa	v_f	Vfg	vg	h_f	h _{fg}	h _g -	s _f	Sfg	s _g	t
0	0.6112	0.001 000	206.141	206.143	-0.04	2500.81	2500.77	-0.0002	9.1555	9.1553	0
1	0.6571	0.001 000	192.455	192.456	4.18	2498.43	2502.61	0.0153	9.1134	9.1286	1
2	0.7060	0.001 000	179.769	179.770	8.39	2496.05	2504.45	0.0306	9.0716	9.1022	2
3	0.7580	0.001 000	168.026	168.027	12.60	2493.68	2506.28	0.0459	9.0302	9.0761	3
4	0.8135	0.001 000	157.137	157.138	16.81	2491.31	2508.12	0.0611	8.9890	9.0501	4
5	0.8725	0.001 000	147.032	147.033	21.02	2488.94	2509.96	0.0763	8.9482	9.0244	5
6	0.9373	0.001 000	137.653	137.654	25.22	2486.57	2511.79	0.0913	8.9077	8.9990	6
7	1.0020	0.001 000	128.947	128.948	29.42	2484.20	2513.62	0.1064	8.8674	8.9738	7
8	1.0728	0.001 000	120.850	120.851	33.62	2481.84	2515.46	0.1213	8.8273	8.9488	8
9	1.1481	0.001 000	113.326	113.327	37.82	2479.47	2517.29	0.1362	8.7878	8.9240	9
10	1.2280	0.001 000	106.328	106.329	42.01	2477.11	2519.12	0.1511	8.7484	8.8995	10
11	1.3127	0.001 000	99.812	99.813	46.21	2474.74	2520.95	0.1659	8.7093	8.8752	11
12	1.4026	0.001 001	93.743	93.744	50.40	2472.38	2522.78	0.1806	8.6705	8.8511	12
13	1.4978	0.001 001	88.088	88.089	54.59	2470.02	2524.61	0.1953	8.6319	8.8272	13
14	1.5987	0.001 001	82.815	82.816	58.78	2467.66	2526.44	0.2099	8.5936	8.8035	14
15	1.7055	0.001 001	77.897	77.898	62.97	2465.30	2528.26	0.2244	8.5556	8.7801	15
16	1.8184	0.001 001	73.307	73.308	67.16	2462.93	2530.09	0.2389	8.5178	8.7568	16
17	1.9380	0.001 001	69.021	69.022	71.34	2460.57	2531.92	0.2534	8.4804	8.7338	17
18	2.0643	0.001 002	65.017	65.018	75.53	2458.21	2533.74	0.2678	8.4431	8.7109	18
19	2.1978	0.001 002	61.272	61.273	79.72	2455.85	2535.56	0.2821	8.4061	8.6883	19
20	2.3388	0.001 002	57.774	57.773	83.90	2453.48	2537.38	0.2964	8.3694	8.6658	20
21	2.4877	0.001 002	54.499	54.500	88.08	2451.12	2539.20	0.3107	8.3329	8.6436	21
22	2.6448	0.001 002	51.433	51.434	92.27	2448.75	2541.02	0.3249	8.2967	8.6215	22
23	2.8104	0.001 003	48.562	48.563	96.45	2446.39	2542.84	0.3390	8.2607	8.5996	23
24	2.9851	0.001 003	45.872	45.873	100.63	2444.02	2544.65	0.3531	8.2249	8.5780	24
25	3.1692	0.001 003	43.350	43.351	104.81	2441.66	2546.47	0.3672	8.1894	8.5565	25
26	3.3631	0.001 003	40.985	40.986	108.99	2439.29	2548.28	0.3812	8.1541	8.5352	26
27	3.5673	0.001 004	38.766	38.767	113.18	2436.92	2550.09	0.3951	8.1190	8.5141	27
28	3.7822	0.001 004	36.682	36.683	117.36	2434.55	2551.90	0.4090	8.0842	8.4932	28
29	4.0083	0.001 004	34.726	34.727	121.54	2432.17	2553.71	0.4229	8.0496	8.4724	29
30	4.2460	0.001 004	32.889	32.889	125.72	2429.80	2555.52	0.4367	8.0152	8.4519	30
31	4.4959	0.001 005	31.160	31.161	129.90	2427.43	2557.32	0.4505	7.9810	8.4315	31
32	4.7585	0.001 005	29.535	29.536	134.08	2425.05	2559.13	0.4642	7.9471	8.4112	32
33	5.0343	0.001 005	28.006	28.007	138.26	2422.67	2560.93	0.4779	7.9133	8.3912	33
34	5.3239	0.001 006	26.567	26.568	142.44	2420.29	2562.73	0.4915	7.8790	8.3713	34
35	5.6278	0.001 006	25.212	25.213	146.62	2417.91	2564.53	0.5051	7.8465	8.3516	35

Table 3 Thermodynamic Properties of Water at Saturation (Continued)
- Then get p_w for indoor and outdoor conditions
 Gives us the driving force
- Indoor @ 24°C and 50% RH:

$$p_{w,in} = \phi p_{ws,in} = 0.5(2985.3) = 1492.6$$
 Pa

• Outdoor @ 35°C and 40% RH:

$$p_{w,out} = \phi p_{ws,out} = 0.4(5627.8) = 2251.1 \text{ Pa}$$

$$\dot{M}_{v} = \frac{\mu}{L} A \left(p_{w,out} - p_{w,in} \right) = M A \left(p_{w,out} - p_{w,in} \right)$$

Need µ or M or extruded polystryene foam

Table 7A Typical Water Vapor Permeance and Permeability Values for Common Building Materials^a

Material	Thickness, mm	Permeance, ng/(s·m²·Pa)	Resistance ^h , (TPa·m ² ·s)/kg	Permeability, ng/(s·m·Pa)	Resistance/m ^h , (TPa·m·s)/kg
Thermal Insulations					
Air (still)				174 ^f	0.0057
Cellular glass				0.0 ^d *	œ
Corkboard				3.0-3.8 ^d	0.33-0.26
				14 ^e	0.076
Mineral wool (unprotected)				245 ^e	0.0059
Expanded polyurethane $[R = 1.94 \text{ W}/(\text{m}^2 \cdot \text{K})]$ board stock				0.58-2.3 ^d	1.72-0.43
Expanded polystyrene—extruded				1.7 ^d	0.57
Expanded polystyrene—bead				2.9-8.4 ^d *	0.34-0.12
Phenolic foam (covering removed)				38	0.026
Unicellular synthetic flexible rubber foam				0.029 ^d	34-4.61
Plastic and Metal Foils and Films ^c					
Aluminum foil	0.025	0.0 ^d	œ		
Aluminum foil	0.009	2.9 ^d	0.345		
Polyethylene	0.051	9.1 ^d	0.110		2133
Polyethylene	0.1	4.6 ^d	0.217		2133
Polyethylene	0.15	3.4 ^d *	0.294		2133
Polyethylene	0.2	2.3 ^d *	0.435		2133
Polyethylene	0.25	1.7 ^d	0.588		2133
Polyvinylchloride, unplasticized	0.051	39 ^d *	0.026		
Polyvinylchloride, plasticized	0.1	46-80 ^d *	0.032		
Polyester	0.025	42 ^d	0.042		
Polyester	0.09	13 ^d	0.075		
Polyester	0.19	4.6 ^d	0.22		
Cellulose acetate	0.25	263 ^d	0.0035		
Cellulose acetate	3.2	18 ^d	0.054		
	L	Μ	R _v	μ	39
			(strange units)	

$$\dot{M}_{v} = \frac{\mu}{L} A \left(p_{w,out} - p_{w,in} \right) = M A \left(p_{w,out} - p_{w,in} \right)$$

$$\dot{M}_{v} = \frac{\mu}{L} A \left(p_{w,out} - p_{w,in} \right)$$

$$\dot{M}_{v} = \frac{1.7 \frac{\text{ng}}{\text{s} \cdot \text{m} \cdot \text{Pa}}}{0.05 \text{ m}} (2 \text{ m})(3 \text{ m})(2251.1 - 1492.6 \text{ Pa})$$

$$\dot{M}_{v} = 157768 \ \frac{\text{ng}}{\text{s}} = 157.768 \ \frac{\mu\text{g}}{\text{s}} = 0.157 \ \frac{\text{mg}}{\text{s}}$$

Is that a lot of water?

Is that a lot of water?

$$\dot{M}_{v} = 157768 \ \frac{\text{ng}}{\text{s}} = 157.768 \ \frac{\mu\text{g}}{\text{s}} = 0.157 \ \frac{\text{mg}}{\text{s}}$$

- In 1 hour, or 3600 seconds, that would mean ~565 mg of water vapor would be driven inward
- Density of water is ~0.622(1.2 kg/m³) = ~0.746 kg/m³

$$(565 \text{ mg})(\frac{\text{m}^3}{0.746 \text{ kg}})(\frac{1 \text{ kg}}{1000 \text{ g}})(\frac{1 \text{ g}}{1000 \text{ mg}}) = 0.000757 \text{ m}^3 \approx 0.8 \text{ L}$$

- Assume the insulation was adjacent to a 2 m x 3 m x 3 m space
 - Volume = 18 m³ = 18,000 L
- Adding 0.8 L to 18,000 L would raise the water content of the room by about 0.005%

Is that a lot of water? No

- Method is called Glaser's method
 - Used since the 1930s
- Analogous to heat flow through multiple layers
- Two things to remember:
 - Vapor flux across the entire assembly must also pass through each layer (conservation of mass)
 - Sum of the **resistances** of each layer gives the total resistance
 - Do not add permeances
 - Sound familiar?

• For any layer j:

$$\dot{M}_{v} = M_{j}A\Delta p_{w,j} = \frac{1}{R_{v,j}}A\Delta p_{w,j}$$

• For an assembly of n layers:

$$\dot{M}_{v} = A \frac{p_{w,interior} - p_{w,exterior}}{\sum_{j=0}^{n} R_{v,j}}$$

• Vapor transmittance of a system of n layers

$$M_{v,total} = \frac{1}{\sum_{j=0}^{n} R_{v,j}}$$

• Vapor pressure drop across layer j:

$$\Delta p_{w,j} = \dot{M}_{v} R_{v,j}$$

• Combining equations:

$$\Delta p_{w,j} = \frac{p_{w,interior} - p_{w,exterior}}{\sum_{j=0}^{n} R_{v,j}} R_{v,j}$$

• Again: Doesn't this look familiar?

- A note on surface transfer coefficients
 - Remember that for heat transfer analysis we have to incorporate combined convective/radiative heat transfer coefficients into a "film" resistance
- For vapor transport, the convective mass transfer at exterior and interior surfaces is so high relative to vapor resistance that it can be ignored
 - No need for a "film resistance"
 - Equivalent permeance values (M)
 - Interior surfaces: 15000 ng/(Pa s m²)
 - Still air spaces: 18000 ng/(Pa s m²)
 - Exterior surfaces: 75000 ng/(Pa s m²)
 - Compared to most building materials having 0-1000 ng/(Pa s m²)

- 1. Break assembly into parallel paths
- 2. Find temp on all surfaces, T_i , of each path
- 3. Calculate saturation vapor pressure on all surfaces at the surface temp ($p_{ws,j} \oslash T_j$)
- 4. Calculate interior and exterior vapor pressure from interior and exterior conditions
- 5. Estimate the vapor pressure, $p_{w,j}$, through the assembly assuming no condensation
- 6. Check if $p_{w,j} > p_{ws,j}$ at any location
 - If so then condensation occurs on that surface
- 7. If condensation occurs, set $p_{w,j} = p_{ws,j}$ and reanalyze

- Calculate vapor distribution through the wall assembly shown
 - Is condensation expected to occur anywhere in the assembly under the given conditions?

• Start by finding material properties

	Permeability	Thickness	Permeance	Resistance
	μ	L	$\mathbf{M}_{\mathbf{j}}$	R _{v,j}
Layer material	ng/(Pa-s-m)	m	$ng/(Pa-s-m^2)$	(Pa-s-m ²)/ng
Indoors				
Interior film			15000	0.000067
Concrete	2.6	0.15	17.3	0.058
XPS	2.0	0.075	26.7	0.0375
Air space		0.025	7200	0.00014
Brick	10	0.09	111	0.009
Exterior film			75000	0.000013
Outdoors				

- Calculate total vapor resistance (R_v)
 - $R_v = \text{sum of all } R_j$
- Calculate vapor pressure difference across each element

$$\Delta p_{w,j} = \frac{p_{w,interior} - p_{w,exterior}}{\sum_{j=0}^{n} R_{v,j}} R_{v,j}$$

Calculate vapor pressure at each interface

$$p_{w,2} = p_{w,1} - \Delta p_{w,2-1}$$

- Need to determine vapor pressure and temperature at each interface in the assembly
 - p_{ws} at boundaries:
 - − Indoor (21°C, 50%RH) \rightarrow p_{ws} = 2488 Pa
 - p_w = 0.5(2488) = 1244 Pa
 - − Outdoor (5°C, 80% RH) \rightarrow p_{ws} = 873 Pa
 - p_w = 0.8(873) = 698 Pa

	Permeability	Thickness	Permeance	Resistance		
	μ	L	Mj	R _{v,j}	$\Delta P_{w,j}$	P _{w,j}
Layer material	ng/(Pa-s-m)	m	$ng/(Pa-s-m^2)$	(Pa-s-m ²)/ng	Pa	Pa
Indoors						1244
Interior film			15000	0.000067	0.3	
						1243.7
Concrete	2.6	0.15	17.3	0.058	301.7	
						942.0
XPS	2.0	0.075	26.7	0.0375	196.1	
						745.9
Air space		0.025	7200	0.00014	0.7	
						745.1
Brick	10	0.09	111	0.009	47.1	
						698.1
Exterior film			75000	0.000013	0.1	
Outdoors						698
	-	-	R _{v.total}	0.104		-

Now we have the vapor pressure at each surface interface Great! But not that helpful yet...

- Now estimate temperature distribution throughout assembly
 - We previously learned how to do this

	Conductivity, k	Thickness, L	Conductance, U	Resistance, R	ΔΤ	Т
Layer material	W/mK	m	W/m ² K	m ² K/W	°C	°C
Indoors						21
Interior film			8.0	0.125		
					0.7	20.3
Concrete	1.8	0.15	12	0.083		
					0.4	19.9
XPS	0.029	0.075	0.39	2.564		
					13.5	6.4
Air space		0.025	n/a	0.17		
					0.9	5.5
Brick	1.3	0.09	14.4	0.069		
					0.4	5.2
Exterior film			34	0.029		
Outdoors					0.2	5.0
			R_{total} (m ² K/W)	3.04		
			U_{total} (W/m ² K)	0.33		

Now, calculate saturation vapor pressure at each interface (p_{w,s})
– Remember: function of temperature only

$$\ln p_{ws} = C_8 / T + C_9 + C_{10}T + C_{11}T^2 + C_{12}T^3 + C_{13}\ln T$$

where

 $\begin{array}{l} C_8 = -5.800\ 220\ 6\ \mathrm{E}{+}03\\ C_9 = \ 1.391\ 499\ 3\ \mathrm{E}{+}00\\ C_{10} = -4.864\ 023\ 9\ \mathrm{E}{-}02\\ C_{11} = \ 4.176\ 476\ 8\ \mathrm{E}{-}05\\ C_{12} = -1.445\ 209\ 3\ \mathrm{E}{-}08\\ C_{13} = \ 6.545\ 967\ 3\ \mathrm{E}{+}00 \end{array}$

• Saturation vapor pressure at each interface (p_{w,s})

	Conductivity, k	Thickness, L	Conductance, U	Resistance, R	ΔΤ	Т	Т	P _{w,sat}
Layer material	W/mK	m	W/m ² K	m ² K/W	°C	°C	K	Pa
Indoors						21	294.2	2487.7
Interior film			8.0	0.125				
					0.7	20.3	293.5	2388.9
Concrete	1.8	0.15	12	0.083				
					0.4	19.9	293.1	2324.9
XPS	0.029	0.075	0.39	2.564				
					13.5	6.4	279.6	962.4
Air space		0.025	n/a	0.17				
					0.9	5.5	278.7	904.6
Brick	1.3	0.09	14.4	0.069				
					0.4	5.2	278.3	881.9
Exterior film			34	0.029				
Outdoors					0.2	5.0	278.2	872.5
			R_{total} (m ² K/W)	3.04				
			U_{total} (W/m ² K)	0.33				

- Will we have condensation?
 - Compare actual vapor pressure to saturation vapor pressure at each layer interface (p_w vs. $p_{w,s}$)

	Permeability	Thickness	Permeance	Resistance				
	μ	L	Mj	R _{v,j}	$\Delta P_{w,j}$	P _{w,j}	P _{w,sat}	RH
Layer material	ng/(Pa-s-m)	m	$ng/(Pa-s-m^2)$	(Pa-s-m ²)/ng	Pa	Pa	Pa	%
Indoors						1244	2487.7	50%
Interior film			15000	0.000067	0.3			
						1243.7	2388.9	52%
Concrete	2.6	0.15	17.3	0.058	301.7			
						942.0	2324.9	41%
XPS	2.0	0.075	26.7	0.0375	196.1			
						745.9	962.4	77%
Air space		0.025	7200	0.00014	0.7			
						745.1	904.6	82%
Brick	10	0.09	111	0.009	47.1			
						698.1	881.9	79%
Exterior film			75000	0.000013	0.1			
Outdoors						698	872.5	80%
•			$R_{v,total}$	0.104		-		

No condensation under these conditions!

- What happens if conditions change?
 - Interior stays same (21°C and 50% RH)
 - Exterior drops to -14°C and 80% RH

	Permeability	Thickness	Permeance	Resistance		
	μ	L	Mj	R _{v,j}	$\Delta P_{w,j}$	P _{w,j}
Layer material	ng/(Pa-s-m)	m	$ng/(Pa-s-m^2)$	(Pa-s-m ²)/ng	Pa	Pa
Indoors						1244
Interior film			15000	0.000067	0.7	
						1243.3
Concrete	2.6	0.15	17.3	0.058	595.6	
						647.7
XPS	2.0	0.075	26.7	0.0375	387.2	
						260.5
Air space		0.025	7200	0.00014	1.4	
						259.1
Brick	10	0.09	111	0.009	92.9	
						166.1
Exterior film			75000	0.000013	0.1	
Outdoors						166
			R _{v,total}	0.104		

- What happens if conditions change?
 - Interior stays same (21°C and 50% RH)
 - Exterior drops to -14°C and 80% RH

	Conductivity, k	Thickness, L	Conductance, U	Resistance, R	ΔΤ	Т	Т	P _{w,sat}
Layer material	W/mK	m	W/m ² K	m ² K/W	°C	°C	K	Pa
Indoors						21	294.2	2487.7
Interior film			8.0	0.125				
					1.4	19.6	292.7	2276.0
Concrete	1.8	0.15	12	0.083				
					1.0	18.6	291.8	2143.8
XPS	0.029	0.075	0.39	2.564				
					29.5	-10.9	262.2	266.7
Air space		0.025	n/a	0.17				
					2.0	-12.9	260.3	228.0
Brick	1.3	0.09	14.4	0.069				
					0.8	-13.7	259.5	213.6
Exterior film			34	0.029				
Outdoors					0.3	-14.0	259.2	207.8
			R_{total} (m ² K/W)	3.04				
			$U_{total} (W/m^2K)$	0.33				

- What happens if conditions change?
 - Interior stays same (21°C and 50% RH)
 - Exterior drops to -14°C and 80% RH

	Permeability	Thickness	Permeance	Resistance				
	μ	L	Mj	R _{v,j}	$\Delta P_{w,j}$	P _{w,j}	P _{w,sat}	RH
Layer material	ng/(Pa-s-m)	m	$ng/(Pa-s-m^2)$	(Pa-s-m ²)/ng	Pa	Pa	Pa	%
Indoors						1244	2487.7	50%
Interior film			15000	0.000067	0.7			
						1243.3	2276.0	55%
Concrete	2.6	0.15	17.3	0.058	595.6			
						647.7	2143.8	30%
XPS	2.0	0.075	26.7	0.0375	387.2			
						260.5	266.7	98%
Air space		0.025	7200	0.00014	1.4			
						259.1	228.0	114%
Brick	10	0.09	111	0.009	92.9			
						166.1	213.6	78%
Exterior film			75000	0.000013	0.1			
Outdoors						166	207.8	80%
			R _{v,total}	0.104				

Condensation will occur between air and brick! (RH > 100%)

- Now, RH can't technically be greater than 100%
- To continue the analysis, we would divide the wall into two sections
 - Analyze the sections independently
 - The reason is that if condensation occurs on a surface, some amount of moisture is removed at that interface
 - Assumption that mass flow in = mass flow out is **false**
 - Some vapor is removed (by conversion to condensate)
- Reality check:
 - Condensation plane will seldom be inside a highly porous material (i.e., not brick, stone, wood, or batt insulation)
 - As a general rule, the condensation plane will usually be the next upstream-facing solid surface on the cold side of the dewpoint
 - The condensation plane we pick will determine how we device the wall into two portions and continue

- Dividing a wall at the condensation plane **Procedure:**
- Divide wall into two separate portions at the condensation plane
- Set the vapor pressure at the condensation plane equal to the saturation vapor pressure (RH = 100%)
 - This is more realistic and makes all calculations more accurate
- Analyze each portion of the divided wall separately using methods from previous example, but using the temperature and vapor pressure at the condensation plane as a boundary condition
 - For example: the interior portion of the divided assembly uses the vapor pressure at the condensation plane as the "exterior" vapor pressure

Layer Material	M _i (ng/Pa⋅s⋅m²)	R _{v,i} (Pa⋅s⋅m²/ ng)	т (°С)	P _{w,sat} (Pa)	P _w (Pa)	RH (%)
Interior			21.0	2497.	1249.	50.
Interior film note	15000.	0.000067				
			19.6	2287.	1248.	55.
Concrete	17.3	0.058				
			18.6	2155.	631.	29.
Type 4 XPS	26.7	0.038				
			-10.9	268.	230.	86.
Air space	7200.	0.00014				
			-12.9	229.	229.	100.
	ΣR_v	0.0954		$\Sigma \Delta P_w$	1020.	
		Flow to:	$\Delta P / \Sigma R_v$	10689.	ng/·s·m ²	
			-12.9	229.	229.	100.
Brick	111.1	0.0090				
			-13.7	215.	167.	78.
Exterior film	75000.	0.000013				
Exterior			-14.0	209.	167.	80.
	ΣR_v	0.0090		$\Sigma \Delta P_w$	62.	
		Flow away:	$\Delta P / \Sigma R_v$	6862.	ng/·s·m²	
		Net Accu	imulation:	3827.	ng/·s·m²	

RH set to 100%

RH set to 100%

• What happened to the condensate?

$\Sigma R_{\rm v}$	0.0954		$\Sigma \Delta P_w$	1020.
	Flow to:	$\Delta P / \Sigma R_v$	10689.	ng/·s·m²

The vapor pressure difference from interior to edge of brick divided by the sum of the vapor resistances on this side of the wall division tells us the rate of inflow or outflow of vapor (inflow from interior to brick surface in this case)

• Similarly, on the other wall division:

ΣR_v	0.0090	$\Sigma \Delta P_w$	62.	Rate of outflow from
	Flow away: $\Delta P / \Sigma R_v$	6862.	ng/·s·m²	brick surface to
	Net Accumulation:	3827.	ng/·s·m²	exterior

 The difference between the rate of vapor flow into the condensation plane and the rate of vapor flow away from the plane yields the net accumulation

$\Sigma R_{\rm v}$	0.0090		$\Sigma \Delta P_w$	62.
	Flow away:	$\Delta P / \Sigma R_v$	6862.	ng/·s·m²
	Net Accu	mulation:	3827.	ng/·s·m²

- Net accumulation accounts for the rate of condensate formation
 - From vapor to liquid water
 - Net accumulation = 3827 ng/(s m^2) or $0.0137 \text{ grams per hr per m}^2$
 - This is not a lot of condensation
 - If conditions stayed the same for 24 hours, condensation due to vapor diffusion would make a layer of water ~1 µm thick (1 millionth of a meter)

- Even though vapor diffusion was low
 - What to do to prevent condensation under these conditions?
 - Look back at the table of materials
 - Brick, XPS, and concrete have the lowest permeance
 - What if we just add some ventilation to the brick cladding?

	Permeability	Thickness	Permeance	Resistance	
	μ	L	$\mathbf{M}_{\mathbf{j}}$	$\mathbf{R}_{\mathbf{v},\mathbf{j}}$	
Layer material	ng/(Pa-s-m)	m	$ng/(Pa-s-m^2)$	(Pa-s-m ²)/ng	
Indoors					
Interior film			15000	0.000067	
Concrete	2.6	0.15	17.3	0.058	
XPS	2.0	0.075	26.7	0.0375	
Air space		0.025	7200	0.00014	
Brick	10	0.09	111	0.009	
Exterior film			75000	0.000013	
Outdoors					

Adding "weep holes" can increase permeance of brick cladding to 1000 ng/(Pa s m²)

- Even though vapor diffusion was low
 - What to do to prevent condensation under these conditions?
 - Look back at the table of materials
 - Brick, XPS, and concrete have the lowest permeance
 - What if we just add some ventilation to the brick cladding?

	Permeability	Thickness	Permeance	Resistance	
	μ	L	$\mathbf{M}_{\mathbf{j}}$	R _{v,j}	
Layer material	ng/(Pa-s-m)	m	$ng/(Pa-s-m^2)$	(Pa-s-m ²)/ng	
Indoors					
Interior film			15000	0.000067	
Concrete	2.6	0.15	17.3	0.058	
XPS	2.0	0.075	26.7	0.0375	
Air space		0.025	7200	0.00014	
Brick	10	0.09	1000	(0.001)	
Exterior film			75000	0.000013	
Outdoors					

Adding "weep holes" can increase permeance of brick cladding to 1000 ng/(Pa s m²)

• Ventilated brick cladding eliminates condensation potential under these conditions

	Permeability	Thickness	Permeance	Resistance				
	μ	L	Mj	R _{v,j}	$\Delta P_{w,j}$	P _{w,j}	P _{w,sat}	RH
Layer material	ng/(Pa-s-m)	m	$ng/(Pa-s-m^2)$	(Pa-s-m ²)/ng	Pa	Pa	Pa	%
Indoors						1244	2487.7	50%
Interior film			15000	0.000067	0.7			
						1243.3	2276.0	55%
Concrete	2.6	0.15	17.3	0.058	645.1			
						598.2	2143.8	28%
XPS	2.0	0.075	26.7	0.0375	419.3			
						178.9	266.7	67%
Air space		0.025	7200	0.00014	1.6			
_						177.3	228.0	78%
Brick	10	0.09	1000	0.001	11.2			
						166.1	213.6	78%
Exterior film			75000	0.000013	0.1			
Outdoors						166	207.8	80%
			R _{v,total}	0.096				

Vapor pressure diagrams

- We can plot the saturation vapor pressures and predicted vapor pressures on charts as a function of distance from the wall interior
 - Offers a way to interpret previous calculations graphically
- If the predicted pressure is above the saturation vapor pressure we will have condensation
- The ASHRAE handbook shows several examples of these charts

Vapor pressure diagrams

- Condensation is occurring between the insulation and the plywood
- Drying occurs to outside since it is lowest p_w

- Condensation between insulation and sheathing and possibly between sheathing and EIFS
- Drying occurs to outside

Vapor pressure diagrams

 Condensation on this sheathing can dry to either outside or inside

Bulk air movement and vapor transport

- Vapor diffusion is often a relatively small contributor to vapor transport
 - Bulk movement of air usually transports far more water vapor than diffusion
- The capacity of air to hold water vapor is high enough that bulk air movement can transport a significant amount of moisture
 - Forced or natural convection
 - When air comes in contact with enclosure surfaces, condensation will occur at those surfaces below the air's dew point temperature
 - We can attempt to calculate the quantity of condensation at surfaces
Bulk air movement and vapor transport

- Calculating the quantity of air leakage condensation in enclosures is difficult to do accurately
 - But given a flow rate, we can find the maximum amount of condensation that could occur
- We say "maximum amount" because several issues prevent easy and accurate calculation
 - Method assumes steady state diffuse (1-D) convection flow
 - Large flows of air will tend to alter temperatures near the actual flow path (i.e., if warm air entering an envelope actually warms the surface it's passing over, less condensation than we predict will occur)
 - Some moist air will pass through the assembly without actually contacting the surface that we're assuming condensation may be occurring
 - Flow through some enclosures is incredibly complex (think: flow through mineral fiber insulations – our 1-D steady state assumptions lead to inaccuracies)

- Let's calculate the volume of condensation that would form if we had bulk air leakage through this assembly
 - Air leakage rate of 0.5 L per second per m² of exfiltration
 - Air moving from interior to exterior

- Method:
 - 1. Calculate temperature at every layer
 - 2. Calculate moisture content (i.e., humidity ratio) and dewpoint temperature of the interior or exterior air
 - 3. Calculate saturation vapor pressure of the first **upstream-facing** surface in the enclosure that is below the dewpoint temperature of the stream of air
 - 4. The maximum amount of condensate transported by bulk convection (and thus deposited on the condensation plane) is the moisture content of the indoor air minus the saturation moisture content of air at this particular layer

1. Calculate temperature at every layer

	Conductivity, k	Thickness, L	Conductance , U	Resistance, R	ΔΤ	Т	Т	P _{w,sat}	
Layer material	W/mK	m	W/m ² K	m ² K/W	°C	°C	K	Pa	
Indoors						21	294.2	2487.7	
Interior film			8.0	0.125					
					1.1	19.9	293.1	2328.9	
Concrete	1.8	0.15	12	0.083					
					0.7	19.2	292.4	2228.0	
XPS	0.029	0.075	0.39	2.564					
					21.9	-2.7	270.4	501.2	
Air space		0.025	n/a	0.17					
					1.5	-4.2	269.0	449.6	
Brick	1.3	0.09	14.4	0.069					
					0.6	-4.7	268.4	429.9	
Exterior film			34	0.029					
Outdoors					0.3	-5.0	268.2	421.8	
			R_{total} (m ² K/W)	3.04					
			U_{total} (W/m ² K)	0.33					

2. Calculate moisture content and dewpoint temperature of the interior and exterior air

3. Calculate saturation vapor pressure of the first surface in the enclosure that is below the dewpoint of the stream of air ($T_{dew} = 10.2^{\circ}C$)

	Conductivity, k	Thickness, L	Conductance, U	Resistance, R	ΔΤ	Т	Т	P _{w,sat}
Layer material	W/mK	m	W/m ² K	m ² K/W	°C	°C	K	Pa
Indoors						21	294.2	2487.7
Interior film			8.0	0.125				
					1.1	19.9	293.1	2328.9
Concrete	1.8	0.15	12	0.083				
					0.7	19.2	292.4	2228.0
XPS	0.029	0.075	0.39	2.564				
					21.9	-2.7	270.4	501.2
Air space		0.025	n/a	0.17				
					1.5	-4.2	269.0	449.6
Brick	1.3	0.09	14.4	0.069				
					0.6	-4.7	268.4	429.9
Exterior film			34	0.029				
Outdoors					0.3	-5.0	268.2	421.8
			R_{total} (m ² K/W)	3.04				
			$U_{\rm M} (W/m^2 K)$	0.33				

The exterior side of the XPS insulation is the first surface below dew point of air stream BUT, remember our rule for the first "upstream-facing" solid surface Upstream = inside ($p_{w,in} > p_{w,out}$) & XPS side faces out Choose upstream-facing brick surface (T = -4.2 °C) $p_{w,sat} = 450 \text{ Pa} \rightarrow W = 0.622(450)/(101325 - 450) = 0.00279 \text{ kg}_w/\text{kg}_{da}$ 78

4. Maximum amount of condensate transported by bulk convection and deposited on the condensation plane

Mass flow rate of vapor at 0.5 L/s per m², assuming density of air is ~1.2 kg/m³: $\dot{m} = 1.2 \text{ kg/m}^3 * (0.5 \text{ L/s}) (1 \text{ m}^3 / 1000 \text{ L}) \text{ per m}^2$ $\dot{m} = 0.0006 \text{ kg/s per m}^2$

Under ideal conditions, moisture will condense on the back of the brick at the following rate:

 $(W_{in} - W_{sat,condensation plane}) * \dot{m} = (7.73 \text{ g/kg} - 2.79 \text{ g/kg})*(0.0006 \text{ kg/s}) \text{ per m}^2$

Condensation rate = $4.97 \times 10^{-3} \text{ g/s per m}^2$

or Condensation rate = $17.9 \text{ g/hour per } \text{m}^2$

Remember: condensation rate due to **diffusion** in last example was: 0.0137 g/hr per m^2

Over 1000 times more condensation by bulk convection than by diffusion!

Bulk air movement and vapor transport

• Equivalent vapor permeance for various airflow rates:

Airflow rate (L/s per m²)	Equiv. vapor permeance ng/(s m² Pa)
0.05	375
0.10	750
0.25	1875
0.50	3750
1.00	7500
3.00	22600

- For comparison: vapor permeance of brickwork and wood siding is approximately 50 ng /(s m² Pa)
- We will learn more about airflows in enclosures in a future lecture

Limitations of the Glaser Method

- Steady state calculations
 - Temperature and humidity are actually always changing
- Static material properties
 - We cannot easily vary material properties (which vary with RH) without recalculating
- Does not take moisture storage into account
 - Porous materials like wood and masonry can hold very large amounts of water
- These are pretty huge limitations!

Advanced "hygro-thermal" analysis

- A more complete analysis will find temperature, heat flow, moisture flow and moisture diffusion with changing interior and exterior conditions
 - Including changing material properties
 - Including thermal and moisture storage
- We call this hygro-thermal analysis
 - There are free software packages available to do this
 - The most popular is WUFI
 - http://www.wufi-pro.com/

- WUFI applies a limited finite element analysis to walls and roofs
 - WUFI stands for Wärme- Und Feuchtetransport Instationär (Transient heat and moisture transport)
 - Assumes homogenous layers and only 1-D heat transfer
- Thermal and vapor diffusion are calculated
 - Includes solar radiation and real time-varying weather data
- Moisture transport by air infiltration can be added
- Liquid transport and by capillary suction can be included as well

- The commercial version of WUFI is available at <u>http://www.wufi-pro.com/</u> at a cost of €1950 ≈ \$2600
- A free limited version is available from Oak Ridge National Lab (ORNL) who helped support development
 - WUFI Light or WUFI ORNL
 - <u>http://www.ornl.gov/sci/ees/etsd/btric/wufi/</u>
 - You can get a free copy but you have to register (free)
 - Only WUFI Light seems to work
 - Demo film:

http://www.hoki.ibp.fhg.de/wufi/Movie/Movie_Pro_E/ Movie_Pro_E.htm

- You will use both WUFI and our hand-calculation methods in the next homework
- Since we won't have class next week, you will have 2 weeks to do the next HW
 - Should allow for gaining familiarity with WUFI