CAE 463/524 Building Enclosure Design Fall 2013

Lecture 12: November 20, 2013 Finish recent building enclosure research Course wrap-up

Built Environment Research @ III] 👀 😭 🎢 🦯

Advancing energy, environmental, and sustainability research within the built environment

www.built-envi.com

Twitter: <u>@built_envi</u>

Dr. Brent Stephens, Ph.D. Civil, Architectural and Environmental Engineering Illinois Institute of Technology <u>brent@iit.edu</u>

Last time

- Campus project presentations

 Alumni, E1, Stuart, and Crown Hall
- Building enclosure research
 - Ongoing energy and moisture research
 - Vegetative wall performance
 - Impact of enclosures on IAQ
 - Corrosive 'Chinese' drywall

This time and next time

- Two final project presentations
 - Juneyoung
 - Ausrine

- Finish building enclosure research
 - Impact of enclosures on IAQ

- The remaining project presentations will take place Wednesday December 4, 5-7 PM
 - Keep them to 12 minutes max.

Final presentations

BUILDING ENCLOSURES AND OUTDOOR AIR POLLUTION

Indoor vs. outdoor air pollution

Air pollution is both an indoor and an outdoor issue

- Many indoor pollutant sources
- Outdoor pollutants also infiltrate indoors

Much of our exposure to outdoor air pollution occurs indoors

Health effects of indoor exposures are difficult to assess

• Time-consuming, invasive, and costly

Many connections are already made with outdoor pollutants

- There remains a need to advance knowledge of indoor exposures
 - Can improve connections to health effects
 - Can inform how building design and operation impacts exposures

Some outdoor airborne pollutants are regulated

National Ambient Air Quality Standards (NAAQS)

- US EPA and the Clean Air Act (1970)
- Set limits for 6 "criteria" pollutants

Pollutants Regulated Outdoors
Carbon monoxide (CO)
Lead (Pb)
Nitrogen dioxide (NO ₂)
Ozone (O_3) \leftarrow
Particulate matter PM _{2.5} and PM ₁₀
Sulfur dioxide (SO_2)

Sources of particulate matter

Particulate matter: Up close

Casuccio et al., 2004 Fuel Process. Technol.; Ormstad, 2000 Toxicol.; Hinds, 1999 Aerosol Technol.

Particle deposition in the respiratory system

Outdoor PM and health effects

PM_{2.5} and mortality **PM_{2.5} and pediatric ER visits** 1.4 1.25 Steubenville, OH 1.3 Harriman, TN 1.15 S Rate Ratio Rate Ratio 1.2 н Watertown, MA 1.05 St. Louis, MO 1.1 Portage, WI DI Topeka, KS 35 1.0 Ö <u> 1990 - 1997 - 1997 - 1997 - 1997 - 19</u> 20 25 10 15 30 5 10 15 0 20 25 30 35 Concentration (ug/m3) Fine Particles ($\mu g/m^3$)

Mean PM_{2.5} concentration measured outdoors in six cities over several years in the 1980s

Dockery et al., **1993** New Engl J Med

3-day average PM_{2.5}data measured outdoors in Atlanta, GA from 1993 to 2004

Strickland et al., 2010 Am J Respir Crit Care Med

Ozone

Good up high

Bad nearby

Ozone layer absorbs high frequency (small wavelength) UV light from the sun Low-level (tropospheric) ozone in the troposphere is a primary contributor to smog

Ozone chemistry (simplified)

Source: Queensland EPA

Outdoor ozone and health effects

Silverman and Ito, 2005 J Allergy Clin Immunol

Ozone nonattainment areas

Health effects: Outdoor air pollution and mortality

An estimated 130,000 deaths in 2005 in the US were related to outdoor $PM_{2.5}$ (and 5,000 to O_3)

Fann et al., 2012 Risk Analysis

5.4 to 6.2% 6.3 to 7.2%

7.3 to 9.8%

PARTICLE INFILTRATION MEASUREMENTS

Indoor proportion of **outdoor** particles

Outdoor particles infiltrate into and persist within buildings with varying efficiencies

Exposure to outdoor PM often occurs indoors

Often at home

Meng et al., **2005** *J Expo Anal Environ Epidem* Kearney et al., **2010** *Atmos Environ* Wallace and Ott **2011** *J Expo Sci Environ Epidem* MacNeill et al. **2012** *Atmos Environ*

Mechanisms that impact indoor exposures to outdoor PM

Mechanisms that impact indoor exposures to outdoor PM

 $\frac{\mathcal{D}_{in}}{C_{out}} = F_{inf} \ .$

"Penetration Factor"
If P = 1:
The envelope offers no
protection
If P = 0:
The envelope offers
complete protection

 $P\lambda$

 $\lambda + k + j$

Penetration from outdoors

 C_{in} = indoor concentration (#/m³) C_{out} = outdoor concentration (#/cm³) P = penetration factor (-) λ = air exchange rate (1/hr) k = surface deposition rate (1/hr) f = fractional HVAC runtime (-) η = filter removal efficiency (-) Q = HVAC airflow rate (m³/hr) V = indoor air volume (m³)

20

Particle Penetration Particle rebound method (Thatcher et al., 2003)

Size-resolved Penetration Factors

Existing Literature

Size-resolved Penetration Factors

• Ultrafine particle penetration into a test house

Particle Penetration Particle rebound results: 2 homes

Thatcher et al., 2003 Aerosol Science and Technology

Measuring particle infiltration

- Particles can penetrate through cracks in building envelopes
 - Theoretically a function of:
 - Crack geometry
 - Air speed through leaks Liu and Nazaroff, 2001 Atmos Environ
- Are building details and particle penetration factors correlated?
 - e.g., air leakage parameters or building age
 - Need a better test method for measuring P quickly
- Applied a particle penetration test method in 19 homes

Stephens and Siegel, 2012 Indoor Air

PM infiltration: Test homes

Test method | Particulate matter (20-1000 nm)

Stephens and Siegel, Indoor Air 2012 22(6):501-512

Particle infiltration results

Mean (\pm SD) = 0.47 \pm 0.15 | Range = 0.17 \pm 0.03 to 0.72 \pm 0.08

PM infiltration: What can we learn?

Blower doors

Blower door tests

PM infiltration and air leakage

- Particle penetration factors (*P* for 20-1000 nm particles)
 - Significantly correlated with coefficient from blower door tests (C)
 - Spearman's ρ = 0.71 (p < 0.001)

• Association is strong, but predictive ability is low

Stephens and Siegel, Indoor Air 2012 22(6):501-512

PM infiltration: **Outdoor particle source** and air leakage

Leakier homes had much higher outdoor particle source rates

• Potential socioeconomic implications: low-income homes are leakier

Chan et al., 2005 Atmos Environ

PM infiltration and age of homes

Older homes also had much higher outdoor particle source rates

OZONE INFILTRATION

Envelope penetration factors

- O₃ can infiltrate through leaks in building envelopes
 - Ozone can react with envelope materials

Ozone infiltration: New test method

Stephens et al., Environ. Sci. Technol. 2012 46(2), 929-936

Ozone infiltration field testing

Ozone penetration results

Exploration of ozone results: What can we learn?

Spearman's Rank Correlations Significant findings ($p \le 0.05$)

Ozone infiltration was significantly lower in newer homes

Stephens et al., Environ. Sci. Technol. 2012 46(2), 929-936

Exploration of Results: O₃

Test House: 16 replicates

Stephens et al., Environ. Sci. Technol. 2012 46(2), 929-936

Exploration of Results: Wind Direction

Test House: 14 of 16 replicates

Stephens et al., Environ. Sci. Technol. 2012 46(2), 929-936

Comparing Ozone Losses

Envelope deposition vs. indoor reaction/deposition

- Measured ozone decay rate (k_{O3} , hr⁻¹) during normal conditions
 - Normal except HVAC on + mixing fans operating

FUTURE ENCLOSURE RESEARCH AT IIT

Building enclosure research at IIT

- We are working to build capabilities in this area
 - Energy, HAM, and IAQ
- Ongoing (and upcoming) research themes:
 - Impacts of enclosures on infiltration of pollutants
 - Including weatherization retrofits
 - In-situ assessment of enclosure performance
 - Vegetated wall heat transfer (field measurements & modeling)
 - College of Architecture & University of Chicago
 - Assembly R-value testing (laboratory)
 - Hot box testing facility
 - Life cycle costs of building materials
 - Possibility of getting a unit in Carman Hall

Lab instrumentation: T/RH and power/energy

Lab instrumentation: HVAC diagnostics

Blower door (envelope leakage) Duct blaster (duct leakage)

TrueFlow (HVAC airflow rates)

Lab instrumentation: Air quality

R-value (using surface T)

R-value (using air T)

R-value (of air films combined)

COURSE WRAP-UP

Next time

- No class Wednesday November 27th
- The rest of your presentations Wednesday December 4th
 5 pm to 7 pm