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Last time 

•  Campus project presentations 
–  Alumni, E1, Stuart, and Crown Hall 

•  Building enclosure research 
–  Ongoing energy and moisture research 
–  Vegetative wall performance 
–  Impact of enclosures on IAQ 

•  Corrosive ‘Chinese’ drywall 
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This time and next time 

•  Two final project presentations 
–  Juneyoung 
–  Ausrine 

•  Finish building enclosure research 
–  Impact of enclosures on IAQ 

•  The remaining project presentations will take place 
Wednesday December 4, 5-7 PM 
–  Keep them to 12 minutes max. 
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Final presentations 
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BUILDING ENCLOSURES AND 
OUTDOOR AIR POLLUTION 
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Indoor vs. outdoor air pollution 

Air pollution is both an indoor and an outdoor issue 
•  Many indoor pollutant sources 
•  Outdoor pollutants also infiltrate indoors   

Much of our exposure to outdoor air pollution occurs indoors 

Health effects of indoor exposures are difficult to assess 
•  Time-consuming, invasive, and costly 

Many connections are already made with outdoor pollutants 
•  There remains a need to advance knowledge of indoor exposures 

–  Can improve connections to health effects 
–  Can inform how building design and operation impacts exposures 
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Some outdoor airborne pollutants are regulated 

National Ambient Air Quality Standards (NAAQS) 
•  US EPA and the Clean Air Act (1970) 
•  Set limits for 6 “criteria” pollutants 
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Pollutants Regulated Outdoors 
Carbon monoxide (CO) 

Lead (Pb) 
Nitrogen dioxide (NO2) 

Ozone (O3) 

Particulate matter 
PM2.5 and PM10 

Sulfur dioxide (SO2) 



Sources of particulate matter 
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http://science.howstuffworks.com/environmental/green-science/air-pollution-heart-health2.htm http://photo-junction.blogspot.com/2010/05/air-pollution-photos.html 



Particulate matter: Up close 

9 Casuccio et al., 2004 Fuel Process. Technol.; Ormstad, 2000 Toxicol.; Hinds, 1999 Aerosol Technol. 
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Particle deposition in the respiratory system 
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Hinds, 1999 Ch. 11 
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Outdoor PM and health effects 

11 
Pope et al., 2002 J Am Med Assoc 

PM2.5 and pediatric ER visits PM2.5 and mortality 

Rate ratio = Adjusted Mortality-rate ratios 
Fine particles = mean PM2.5 concentration for several years in the 1980s 

Steubenville, OH 

Harriman, TN 

St. Louis, MO 

Watertown, MA 

Portage, WI 

Topeka, KS 

Mean PM2.5 concentration measured outdoors 
in six cities over several years in the 1980s 

Dockery et al., 1993 New Engl J Med Strickland et al., 2010 Am J Respir Crit Care Med 

3-day average PM2.5data measured outdoors 
in Atlanta, GA from 1993 to 2004 



Ozone 

Good up high 
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UV / Visible Light 

Ozone layer absorbs high 
frequency (small wavelength) UV 

light from the sun 

UV / Visible Light

Bad nearby 

Low-level (tropospheric) ozone in 
the troposphere is a primary 

contributor to smog 



Ozone chemistry (simplified) 
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Source: Queensland EPA 

Ozone (O3) 



Outdoor ozone and health effects 
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Bell et al., 2006 Environ Health Persp 

Rate ratio = Adjusted Mortality-rate ratios 
Fine particles = mean PM2.5 concentration for several years in the 1980s 

Ozone data measured outdoors in 98 
US communities from 1987 to 2000 

O3 and mortality O3 and asthma 

Silverman and Ito, 2005 J Allergy Clin Immunol 



Ozone nonattainment areas 
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Health effects: Outdoor air pollution and mortality 

16 Fann et al., 2012 Risk Analysis 

An estimated 130,000 deaths in 
2005 in the US were related to 
outdoor PM2.5 (and 5,000 to O3) 



PARTICLE INFILTRATION 
MEASUREMENTS 
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Indoor proportion of outdoor particles 
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Outdoor particles infiltrate into 
and persist within buildings 
with varying efficiencies 

 

Exposure to outdoor PM 
often occurs indoors 

Often at home 
Meng et al., 2005 J Expo Anal Environ Epidem 

Kearney et al., 2010 Atmos Environ 
Wallace and Ott 2011 J Expo Sci Environ Epidem 

MacNeill et al. 2012 Atmos Environ 

Williams et al., 2003 Atmos Environ 

Kearney et al., 2010 Atmos Environ 



Mechanisms that impact indoor exposures to outdoor PM 
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Removal by 
AER and 
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surfaces  

Penetration from outdoors"
Air exchange"

Deposition"
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V

Cin = indoor concentration (#/m3) 
Cout = outdoor concentration (#/cm3) 
P = penetration factor (-) 
λ = air exchange rate (1/hr) 
k = surface deposition rate (1/hr) 
f = fractional HVAC runtime (-) 
η = filter removal efficiency (-) 
Q = HVAC airflow rate (m3/hr) 
V = indoor air volume (m3) 



Mechanisms that impact indoor exposures to outdoor PM 
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Removal by 
AER and 

deposition to 
(or reaction 

with) 
surfaces  

Penetration from outdoors"

Change in 
indoor 

concentratio
n in time 

Contribution 
from air 

exchange  
with 

 outdoors 

Removal by 
airflow 
through 
HVAC 
system 

P 
λ β (or k) 

Cin

Cout

= Finf =
Pλ

λ + k + f ηQ
V

“Penetration Factor” 
If P = 1: 
The envelope offers no 
protection 
If P = 0: 
The envelope offers 
complete protection 

Cin = indoor concentration (#/m3) 
Cout = outdoor concentration (#/cm3) 
P = penetration factor (-) 
λ = air exchange rate (1/hr) 
k = surface deposition rate (1/hr) 
f = fractional HVAC runtime (-) 
η = filter removal efficiency (-) 
Q = HVAC airflow rate (m3/hr) 
V = indoor air volume (m3) 



Thatcher et al., 2003 Aerosol Sci Tech 

Particle Penetration 
Particle rebound method (Thatcher et al., 2003) 
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Size-resolved Penetration Factors 
Existing Literature 
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Chen and Zhao, 2011 Atmos Environ 

Only 6 homes 



Size-resolved Penetration Factors 

•  Ultrafine particle penetration into a test house 
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7 homes! 



Particle Penetration 
Particle rebound results: 2 homes 
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ELA = 148 cm2 

Tight house 
ELA = 87 cm2 

*Estimated Leakage Area (ELA) = f (blower door air leakage coefficients & ΔP) 
Thatcher et al., 2003 Aerosol Science and Technology 



Measuring particle infiltration 
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gases 

viruses 

Particle  
Diameter 

tobacco smoke 

diesel smoke fungal spores 

pollen 

dust 

1 nm  10 nm    100 nm         1 µm         10 µm 100 µm 

20 – 1000 nm 

•  Particles can penetrate through cracks in building envelopes 
–  Theoretically a function of: 

•  Crack geometry 
•  Air speed through leaks 

•  Are building details and particle penetration factors correlated? 
–  e.g., air leakage parameters or building age 
–  Need a better test method for measuring P quickly 

•  Applied a particle penetration test method in 19 homes 

Liu and Nazaroff, 2001 Atmos Environ 

Stephens and Siegel, 2012 Indoor Air 
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PM infiltration: Test homes 
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Stephens and Siegel, Indoor Air 2012 22(6):501-512 
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b

Use first portion of  
data to solve for k: 

Use estimate of k and 
all of the data to  
solve for P: 

a

P

k 

k 

Parameter Estimation 
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Stephens and Siegel, Indoor Air 2012 22(6):501-512 



Particle infiltration results 
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Mean (± SD) = 0.47 ± 0.15  |  Range = 0.17 ± 0.03 to 0.72 ± 0.08 

Stephens and Siegel, Indoor Air 2012 22(6):501-512 



PM infiltration: What can we learn? 
•  Blower doors 

–  Used to measure air-tightness in buildings worldwide 

29 
Source: Energy Conservatory Blower Door Manual 



Blower door tests 
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€ 

Q = CΔPn

Source: ASTM E 779 and ASHRAE Standard 119 

Airflow 
(m3 s-1) Leakage 

Coefficient 
(m3 s-1 Pa-n) 

I/O Pressure 
Difference 

(Pa) 

Leakage 
Exponent 

(dimensionless) 

Estimated Leakage Area (cm2) Normalized Leakage, NL (dimensionless) 

Air Changes per Hour @ 50 Pa (hr-1) 



•  Particle penetration factors (P for 20-1000 nm particles) 
–  Significantly correlated with coefficient from blower door tests (C) 
–  Spearman’s ρ = 0.71 (p < 0.001) 

•  Association is strong, but predictive ability is low 

PM infiltration and air leakage 

31 
Stephens and Siegel, Indoor Air 2012 22(6):501-512 



PM infiltration: Outdoor particle source and air leakage 

32 

LossAER
AERP

C
C

out

in

+

×
=

Leakier homes had much higher outdoor particle source rates 

•  Potential socioeconomic implications: low-income homes are leakier 
Chan et al., 2005 Atmos Environ 

Stephens and Siegel, Indoor Air 2012 22(6):501-512 



PM infiltration and age of homes 
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Older homes also had much higher outdoor particle source rates 
Stephens and Siegel, Indoor Air 2012 22(6):501-512 
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OZONE INFILTRATION 
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Envelope penetration factors 
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•  O3 can infiltrate through leaks in building envelopes 
−  Ozone can react with envelope materials 

•  No one had ever measured ozone penetration factors 
•  Some modeling efforts 

Liu and Nazaroff, 2001 Atmos Environ 

More reactive Less reactive 
10-8 10-7 10-6 10-5 10-4 

Aluminum Brick Glass Concrete Plywood Fiberglass 

Reaction Probability, 𝛾 



Ozone infiltration: New test method 
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Stephens et al., Environ. Sci. Technol. 2012 46(2), 929-936 



Ozone infiltration field testing 

37 
Stephens et al., Environ. Sci. Technol. 2012 46(2), 929-936 
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Ozone Penetration Factors 

•   Mean (± SD) = 0.79 ± 0.13  |  Range = 0.62 ± 0.09 to 1.02 ± 0.15 

•   Usually assumed P = 1  
Weschler, 2006 EHP; Gall et al., 2011 Atmos Environ;  
Chen et al., 2011 Environ Health Persp 

Stephens et al., Environ. Sci. Technol. 2012 46(2), 929-936 



Exploration of ozone results: What can we learn? 
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Significant findings (p ≤ 0.05) 

Stephens et al., Environ. Sci. Technol. 2012 46(2), 929-936 

Ozone infiltration was significantly lower in newer homes 



Exploration of Results: O3 
Test House: 16 replicates 
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Exploration of Results: Wind Direction 
Test House: 14 of 16 replicates 
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•  Winds from N or W: 
–  P = 0.70±0.03 

•  Winds from S or E:  
–  P = 0.57±0.07 

•  Repeatability: 
–  Two tests w/ same wind conditions 
–  P = 0.52±0.03 and 0.53±0.03 

N 

Stephens et al., Environ. Sci. Technol. 2012 46(2), 929-936 



Comparing Ozone Losses 
Envelope deposition vs. indoor reaction/deposition 

•  Measured ozone decay rate (kO3, hr-1) during normal conditions  
–  Normal except HVAC on + mixing fans operating 
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Summary 
P ranged from  

0.62 ± 0.09 to 1.02 ± 0.15 
Mean (± SD) = 0.79 ± 0.13 

 
kO3 ranged from 

 3.6 ± 0.1 to 16.8 ± 1.1 hr-1 

Mean (± SD) = 11.6 ± 6.0 hr-1 0%
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Stephens et al., Environ. Sci. Technol. 2012 46(2), 929-936 



FUTURE ENCLOSURE RESEARCH AT 
IIT 
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Building enclosure research at IIT 

•  We are working to build capabilities in this area 
–  Energy, HAM, and IAQ 

•  Ongoing (and upcoming) research themes: 
–  Impacts of enclosures on infiltration of pollutants 

•  Including weatherization retrofits 

–  In-situ assessment of enclosure performance 
–  Vegetated wall heat transfer (field measurements & modeling) 

•  College of Architecture & University of Chicago 

–  Assembly R-value testing (laboratory) 
•  Hot box testing facility 

–  Life cycle costs of building materials 
–  Possibility of getting a unit in Carman Hall 
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Lab instrumentation: T/RH and power/energy 
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Temperature/RH 
Data logging 

Temperature 

Heat flux 
IR camera 

Solar radiation 
Electric power 



Lab instrumentation: HVAC diagnostics 
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Blower door  
(envelope leakage) 

Pressure 

Duct blaster 
(duct leakage) 

TrueFlow 
(HVAC airflow rates) 



Lab instrumentation: Air quality 
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Optical particle sizer 
0.3 to 10 µm 

Ozone monitor 
NanoScan SMPS 

10 to 500 nm 

CPC 
< 1 µm 

DustTrak 
PM2.5/PM10 

CO2 
(for AER) 



Hot box thermal testing facility 
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Hot box thermal testing facility 
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Hot box thermal testing facility 
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Hot box thermal testing facility 
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Preliminary hot box data 
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Preliminary hot box data 
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Preliminary hot box data 
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Time (minutes) 



Preliminary hot box data 
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Time (minutes) 



Preliminary hot box data 
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Time (minutes) 



COURSE WRAP-UP 
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Next time 

•  No class Wednesday November 27th 

•  The rest of your presentations Wednesday December 4th  
–  5 pm to 7 pm  
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