exchange rates and indoor pollutant concentrations is poorly understood. Moreover, studies have seldom evaluated the effects of weatherization on low-income groups or vulnerable populations (e.g., asthmatic or elderly), although occupants in low-income residences are at higher risk for many indoor environmental hazards (Evans and Kantrowitz 2002), and some population subgroups may also be disproportionately affected by indoor air pollution (Hun et al. 2009).

Although some research exists on the impact of weatherization on indoor concentrations of combustion products, radon, and moisture, other indoor pollutants deserve attention. For example, Logue et al. (2011) identified nine priority indoor air pollutant hazards in U.S. residences, which, among others, have been associated with a wide range of both chronic and acute health effects (e.g., benzene, 1,4-dichlorobenzene, formaldehyde, naphthalene, particulate matter < 2.5 µm in aerodynamic diameter). Moreover, reducing air exchange rates in residences will likely increase indoor concentrations of reactive pollutants and the probability of chemical reactions occurring between them indoors (Weschler and Shields 2000), generating by-products associated with respiratory symptoms and asthma, such as low-molecular-weight aldehydes, dicarbonyls, and secondary organic aerosols (Javis et al. 2005). On the other hand, reductions in air infiltration should decrease penetration of outdoor pollutants, which is of particular importance in traditionally leakier low-income households (Chan et al. 2005) in neighborhoods with high outdoor air pollution. Thus, we urge the environmental health community to investigate the net effects of weatherization on a wide variety of indoor and outdoor pollutants and health outcomes.

Implementation of home energy retrofits also creates an opportunity to incorporate innovative, engaging homeowner education strategies to reduce both energy consumption and indoor environmental risks. Occupant behavior has a major influence on both energy consumption (Allcott and Mullainathan 2010) and indoor exposures to pollutants (Meng et al. 2005). Furthermore, many indoor air quality risks can be mitigated with relatively simple home behavior practices, such as using exhaust fans, avoiding toxic cleaning chemicals, and using appropriate air cleaners (Bruggé et al. 2003). However, we have learned from research on household energy consumption that educational materials alone usually fail to alter behaviors (Charles 2009). Greater energy savings from home retrofits could be achieved by complementing homeowner education campaigns with regular feedback on energy use and economically motivational programs (Peschiera et al. 2010). Additionally, home walkthroughs with trained building specialists can identify energy-inefficient behaviors and appliances in conjunction with potential indoor environmental hazards. These and other behavior-change strategies to promote green and healthy housing should be made available to weatherization programs across the country, and their effectiveness should be assessed. Because home weatherization is currently a priority of the federal government, this is a crucial time to address these fundamental research questions and implement the findings nationwide.

All authors are current or former trainees or affiliates of a National Science Foundation IGERT program in Indoor Environmental Science and Engineering at The University of Texas at Austin (award DEG 05-09428). M.C.J. is employed by Lennox International, Inc., which produces HVAC systems and products. The other authors declare they have no actual or potential competing financial interests.

Paul A. Eubig
Andréa Aguier
Susan L. Schantz
Department of Comparative Biosciences
College of Veterinary Medicine
University of Illinois at Urbana-Champaign
Urbana, Illinois
E-mail: eubig@illinois.edu

REFERENCES

Home Energy-Efficiency Retrofits
doi:10.1289/ehp.1103621

In the February 2011 issue of EHP, Manuel (2011) took an important look at some potential adverse health implications of home energy retrofits. Here, we further discuss the complexity of possible indoor environmental concerns and encourage incorporation of comprehensive homeowner education campaigns in weatherization programs.

The reduction of air infiltration by air sealing is a common energy retrofit measure (McCold et al. 2008). Several field studies of weatherized homes have reported average reductions in air leakage of 13–40% (Berry 1997; Judkoff et al. 1988), although the impact of weatherization on actual air

Correspondence

Brent Stephens
Ellison M. Carter
Elliott T. Gall
C. Matt Earnest
Elizabeth A. Walsh
National Science Foundation Integrative Graduate Education and Research Traineeship (IGERT) Program in Indoor Environmental Science and Engineering
The University of Texas at Austin
Oak Ridge, Tennessee

Diana E. Hun
Oak Ridge National Laboratory
Oak Ridge, Tennessee

Mark C. Jackson
Lennox International Inc.
Carrollton, Texas

REFERENCES

Janss J, Seed M, Eultan R, Sawyer L, Aguas P. 2005. Relationship between chemical structure and the occupational asthma

Environmental Health Perspectives • VOLUME 119 | NUMBER 7 | July 2011

Environmental Health Research Implications of Methylmercury
doi:10.1289/ehp.1103580

In “Adverse Effects of Methylmercury: Environmental Health Research Implications,” Grandjean et al. (2010) reviewed the scientific discoveries of health risks resulting from methylmercury exposure, including the history of the Minamata disease incident. Although their title states “research implications,” the authors failed to convey some important caveats from the incident.

First, Grandjean et al. (2010) explained the incident as if serious delays of the recognition of “the exact cause (methylmercury)” deferred the corrective action. However, recognition of an etiologic agent is not a necessary condition for prevention (Goodman et al. 1990). When source and transmission are identified, they must be eliminated even if the etiologic agent is unknown. In the case of Minamata disease, even in 1956 when the first patient was identified, eating contaminated seafood was determined to be a cause of the disease; this occurred 3 years before the etiologic agent was identified (Tsuda et al. 2009). Grandjean et al. (2010) cited Harada (2004), who wrote,

However, with no specific causative substance [etiologic agent determined, there was no legal basis for a ban on fishing. (Under Item 2 of the Food Sanitation Act, it was not possible to prohibit fishing while the cause was undetermined.)

However, in Japan, even with no specific etiologic agent determined, the Food Sanitation Act has routinely been enacted when causal food and/or causal facility was determined.

Second, Grandjean et al. (2010) mentioned the “diagnostic difficulties” of methylmercury poisoning cases. Lack of investigation of the Minamata disease incident as food poisoning resulted in unnecessary diagnostic difficulties; such difficulties do not usually arise in food-poisoning incidents in Japan. In the case of Minamata disease, in 1977 the Japanese Ministry of Environment (JME) established the criteria for diagnosis, which required combinations of signs that were advocated by the JME to be medically correct. However, the truth is that the JME recognized a lack of medical evidence on the criteria (Committee on Research on Human Rights/Japanese Society and Psychiatry and Neurology (CRHR-JSPN) 2003). Moreover, detailed medical researchers in Japan have pointed out that the criteria were medically incorrect (CRHR-JSPN 1998). The “diagnostic difficulties” may have obscured who was affected and had neurological signs.

Third, Grandjean et al. (2010) stated that, “Only in 2009 was a law enacted to provide compensation to most of the remaining group of victims.” However, it was not compensation. For Minamata disease, unless the affected persons are diagnosed by the above-mentioned criteria, they are not counted as patients and are thus not properly compensated. About 2,200 patients have been diagnosed with Minamata disease and have been compensated, whereas at least several tens of thousands of victims who have neurological signs characteristic of methylmercury poisoning have not been recognized as patients and have not been properly compensated (McCurry 2006).

Fourth, Grandjean et al. (2010) described the “scientific account” of the cat experiment in 1959, which was published after a 40-year delay (Eto et al. 2001). However, the report provided only pathological findings, and the detailed explanation of the cat experiment had already been published in 1965 (Tomita 1965). The latter would be enough for prevention and control.

Finally, because the JME and local governments have been defendants in Minamata disease lawsuits, research funds from JME and the local governments may affect researchers’ attitudes, possibly causing conflicts of interest.

T.T. and M.H. have provided expert testimony on Minamata disease. The other author declares he has no actual or potential competing financial interests.

Toshihide Tsuda
Department of Environmental Epidemiology
Okayama University Graduate School of Environmental Science
Okayama, Japan
E-mail: tsudatos@md.okayama-u.ac.jp

Philippe Grandjean
Department of Environmental Health
Harvard School of Public Health
Boston, Massachusetts
E-mail: pgrand@hsph.harvard.edu

Methylmercury: Grandjean et al. Respond
doi:10.1289/ehp.1103580R

We thank Tsuda et al. for sharing their views. Along with their previous publications on Minamata disease, we find their comments useful as a complement to our brief historical review of the mass poisonings in Japan and associated events (Grandjean et al. 2010). However, the specific issues raised in their letter do not affect our conclusions on the research implications of the history of methylmercury science.

P.G. has provided paid expert testimony on mercury toxicology in a legal case concerning environmental pollution from coal-powered power plants. The other authors declare that they have no actual or potential competing financial interests.

Philippe Grandjean
Department of Environmental Epidemiology
Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
Okayama, Japan

Masazumi Harada
Department of Social Welfare Studies
Kumamoto Gakuen University
Kumamoto, Japan

References

